Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Whiteness-based parameter selection for Poisson data in variational image processing (2207.10481v1)

Published 21 Jul 2022 in math.NA and cs.NA

Abstract: We propose a novel automatic parameter selection strategy for variational imaging problems under Poisson noise corruption. The selection of a suitable regularization parameter, whose value is crucial in order to achieve high quality reconstructions, is known to be a particularly hard task in low photon-count regimes. In this work, we extend the so-called residual whiteness principle originally designed for additive white noise to Poisson data. The proposed strategy relies on the study of the whiteness property of a standardized Poisson noise process. After deriving the theoretical properties that motivate our proposal, we solve the target minimization problem with a linearized version of the alternating direction method of multipliers, which is particularly suitable in presence of a general linear forward operator. Our strategy is extensively tested on image restoration and computed tomography reconstruction problems, and compared to the well-known discrepancy principle for Poisson noise proposed by Zanella at al. and with a nearly exact version of it previously proposed by the authors.

Citations (5)

Summary

We haven't generated a summary for this paper yet.