Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normalized solutions to lower critical Choquard equation with a local perturbation (2207.10377v2)

Published 21 Jul 2022 in math.AP

Abstract: In this paper, we study the existence and non-existence of normalized solutions to the lower critical Choquard equation with a local perturbation \begin{equation*} \begin{cases} -\Delta u+\lambda u=\gamma (I_{\alpha}\ast|u|{\frac{N+\alpha}{N}})|u|{\frac{N+\alpha}{N}-2}u+\mu |u|{q-2}u,\quad \text{in}\ \mathbb{R}N, \ \int_{\mathbb{R}N}|u|2dx=c2, \end{cases} \end{equation*} where $\gamma, \mu, c>0$, $2<q\leq 2+\frac{4}{N}$, and $\lambda\in\mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier. The results of this paper about this equation answer some questions proposed by Yao, Chen, R\v{a}dulescu and Sun [Siam J. Math. Anal., 54(3) (2022), 3696-3723]. Moreover, based on the results obtained, we study the multiplicity of normalized solutions to the non-autonomous Choquard equation \begin{equation*} \begin{cases} -\Delta u+\lambda u=(I_\alpha\ast [h(\epsilon x)|u|^{\frac{N+\alpha}{N}}])h(\epsilon x)|u|^{\frac{N+\alpha}{N}-2}u+\mu|u|^{q-2}u,\ x\in \mathbb{R}^N, \\ \int_{\mathbb{R}^N}|u|^2dx=c^2, \end{cases} \end{equation*} where $\epsilon\>0$, $2<q<2+\frac{4}{N}$, and $h$ is a positive and continuous function. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of $h$ when $\epsilon$ is small enough.

Summary

We haven't generated a summary for this paper yet.