Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Sparse Gaussian Mixture Model in High Dimensions (2207.10301v3)

Published 21 Jul 2022 in math.ST and stat.TH

Abstract: We study the sparse high-dimensional Gaussian mixture model when the number of clusters is allowed to grow with the sample size. A minimax lower bound for parameter estimation is established, and we show that a constrained maximum likelihood estimator achieves the minimax lower bound. However, this optimization-based estimator is computationally intractable because the objective function is highly nonconvex and the feasible set involves discrete structures. To address the computational challenge, we propose a Bayesian approach to estimate high-dimensional Gaussian mixtures whose cluster centers exhibit sparsity using a continuous spike-and-slab prior. Posterior inference can be efficiently computed using an easy-to-implement Gibbs sampler. We further prove that the posterior contraction rate of the proposed Bayesian method is minimax optimal. The mis-clustering rate is obtained as a by-product using tools from matrix perturbation theory. The proposed Bayesian sparse Gaussian mixture model does not require pre-specifying the number of clusters, which can be adaptively estimated via the Gibbs sampler. The validity and usefulness of the proposed method is demonstrated through simulation studies and the analysis of a real-world single-cell RNA sequencing dataset.

Summary

We haven't generated a summary for this paper yet.