Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Legendre-Galerkin Neural Network for Singularly Perturbed Partial Differential Equations (2207.10241v3)

Published 21 Jul 2022 in cs.LG

Abstract: Machine learning methods have been lately used to solve partial differential equations (PDEs) and dynamical systems. These approaches have been developed into a novel research field known as scientific machine learning in which techniques such as deep neural networks and statistical learning are applied to classical problems of applied mathematics. In this paper, we develop a novel numerical algorithm that incorporates machine learning and artificial intelligence to solve PDEs. Based on the Legendre-Galerkin framework, we propose the {\it unsupervised machine learning} algorithm to learn {\it multiple instances} of the solutions for different types of PDEs. Our approach overcomes the limitations of data-driven and physics-based methods. The proposed neural network is applied to general 1D and 2D PDEs with various boundary conditions as well as convection-dominated {\it singularly perturbed PDEs} that exhibit strong boundary layer behavior.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Junho Choi (24 papers)
  2. Namjung Kim (4 papers)
  3. Youngjoon Hong (30 papers)

Summary

We haven't generated a summary for this paper yet.