Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Slimmable Quantum Federated Learning (2207.10221v1)

Published 20 Jul 2022 in cs.LG and quant-ph

Abstract: Quantum federated learning (QFL) has recently received increasing attention, where quantum neural networks (QNNs) are integrated into federated learning (FL). In contrast to the existing static QFL methods, we propose slimmable QFL (SlimQFL) in this article, which is a dynamic QFL framework that can cope with time-varying communication channels and computing energy limitations. This is made viable by leveraging the unique nature of a QNN where its angle parameters and pole parameters can be separately trained and dynamically exploited. Simulation results corroborate that SlimQFL achieves higher classification accuracy than Vanilla QFL, particularly under poor channel conditions on average.

Citations (26)

Summary

We haven't generated a summary for this paper yet.