Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pediatric Bone Age Assessment using Deep Learning Models (2207.10169v1)

Published 20 Jul 2022 in eess.IV, cs.CV, and cs.LG

Abstract: Bone age assessment (BAA) is a standard method for determining the age difference between skeletal and chronological age. Manual processes are complicated and necessitate the expertise of experts. This is where deep learning comes into play. In this study, pre-trained models like VGG-16, InceptionV3, XceptionNet, and MobileNet are used to assess the bone age of the input data, and their mean average errors are compared and evaluated to see which model predicts the best.

Citations (2)

Summary

We haven't generated a summary for this paper yet.