Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Mixture of Experts Learning for Generalizable Face Anti-Spoofing (2207.09868v1)

Published 20 Jul 2022 in cs.CV

Abstract: With various face presentation attacks emerging continually, face anti-spoofing (FAS) approaches based on domain generalization (DG) have drawn growing attention. Existing DG-based FAS approaches always capture the domain-invariant features for generalizing on the various unseen domains. However, they neglect individual source domains' discriminative characteristics and diverse domain-specific information of the unseen domains, and the trained model is not sufficient to be adapted to various unseen domains. To address this issue, we propose an Adaptive Mixture of Experts Learning (AMEL) framework, which exploits the domain-specific information to adaptively establish the link among the seen source domains and unseen target domains to further improve the generalization. Concretely, Domain-Specific Experts (DSE) are designed to investigate discriminative and unique domain-specific features as a complement to common domain-invariant features. Moreover, Dynamic Expert Aggregation (DEA) is proposed to adaptively aggregate the complementary information of each source expert based on the domain relevance to the unseen target domain. And combined with meta-learning, these modules work collaboratively to adaptively aggregate meaningful domain-specific information for the various unseen target domains. Extensive experiments and visualizations demonstrate the effectiveness of our method against the state-of-the-art competitors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Qianyu Zhou (40 papers)
  2. Ke-Yue Zhang (14 papers)
  3. Taiping Yao (40 papers)
  4. Ran Yi (68 papers)
  5. Shouhong Ding (90 papers)
  6. Lizhuang Ma (145 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.