Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LR-Net: A Block-based Convolutional Neural Network for Low-Resolution Image Classification (2207.09531v5)

Published 19 Jul 2022 in cs.CV

Abstract: The success of CNN-based architecture on image classification in learning and extracting features made them so popular these days, but the task of image classification becomes more challenging when we apply state of art models to classify noisy and low-quality images. It is still difficult for models to extract meaningful features from this type of image due to its low-resolution and the lack of meaningful global features. Moreover, high-resolution images need more layers to train which means they take more time and computational power to train. Our method also addresses the problem of vanishing gradients as the layers become deeper in deep neural networks that we mentioned earlier. In order to address all these issues, we developed a novel image classification architecture, composed of blocks that are designed to learn both low level and global features from blurred and noisy low-resolution images. Our design of the blocks was heavily influenced by Residual Connections and Inception modules in order to increase performance and reduce parameter sizes. We also assess our work using the MNIST family datasets, with a particular emphasis on the Oracle-MNIST dataset, which is the most difficult to classify due to its low-quality and noisy images. We have performed in-depth tests that demonstrate the presented architecture is faster and more accurate than existing cutting-edge convolutional neural networks. Furthermore, due to the unique properties of our model, it can produce a better result with fewer parameters.

Citations (6)

Summary

We haven't generated a summary for this paper yet.