Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Summing Sneddon-Bessel series explicitly (2207.08709v1)

Published 15 Jul 2022 in math.CA

Abstract: We sum in a close form the Sneddon-Bessel series [ \sum_{m=1}\infty \frac{J_\alpha(x j_{m,\nu})J_\beta(y j_{m,\nu})} {j_{m,\nu}{2n+\alpha+\beta-2\nu+2} J_{\nu+1}(j_{m,\nu})2}, ] where $0<x$, $0<y$, $x+y<2$, $n$ is an integer, $\alpha,\beta,\nu\in \mathbb{C}\setminus {-1,-2,\dots }$ with $2\operatorname{Re} \nu < 2n+1 + \operatorname{Re} \alpha + \operatorname{Re} \beta$ and ${j_{m,\nu}}{m\geq 0}$ are the zeros of the Bessel function $J\nu$ of order $\nu$. As an application we prove some extensions of the Kneser-Sommerfeld expansion.

Summary

We haven't generated a summary for this paper yet.