Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quality Assessment of Image Super-Resolution: Balancing Deterministic and Statistical Fidelity (2207.08689v1)

Published 15 Jul 2022 in cs.CV, cs.MM, and eess.IV

Abstract: There has been a growing interest in developing image super-resolution (SR) algorithms that convert low-resolution (LR) to higher resolution images, but automatically evaluating the visual quality of super-resolved images remains a challenging problem. Here we look at the problem of SR image quality assessment (SR IQA) in a two-dimensional (2D) space of deterministic fidelity (DF) versus statistical fidelity (SF). This allows us to better understand the advantages and disadvantages of existing SR algorithms, which produce images at different clusters in the 2D space of (DF, SF). Specifically, we observe an interesting trend from more traditional SR algorithms that are typically inclined to optimize for DF while losing SF, to more recent generative adversarial network (GAN) based approaches that by contrast exhibit strong advantages in achieving high SF but sometimes appear weak at maintaining DF. Furthermore, we propose an uncertainty weighting scheme based on content-dependent sharpness and texture assessment that merges the two fidelity measures into an overall quality prediction named the Super Resolution Image Fidelity (SRIF) index, which demonstrates superior performance against state-of-the-art IQA models when tested on subject-rated datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wei Zhou (312 papers)
  2. Zhou Wang (98 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.