Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unified Light-Matter Floquet Theory and its Application to Quantum Communication (2207.08558v3)

Published 18 Jul 2022 in quant-ph and cond-mat.quant-gas

Abstract: Periodically-driven quantum systems can exhibit a plethora of intriguing non-equilibrium phenomena that can be analyzed using Floquet theory. Naturally, Floquet theory is employed to describe the dynamics of atoms interacting with intense laser fields. However, this semiclassical analysis can not account for quantum-optical phenomena that rely on the quantized nature of light. In this paper, we take a significant step to go beyond the semiclassical description of atom-photon coupled systems by unifying Floquet theory with quantum optics using the framework of full-counting statistics. This is achieved by introducing counting fields that keep track of the photonic dynamics. This formalism, which we dub ``photon-resolved Floquet theory" (PRFT), is based on two-point tomographic measurements, instead of the two-point projective measurements used in standard full-counting statistics. Strikingly, the PRFT predicts the generation of macroscopic light-matter entanglement when atoms interact with multimode electromagnetic fields, thereby leading to complete decoherence of the atomic subsystem in the basis of the Floquet states. This decoherence occurs rapidly in the optical frequency regime, but is negligible in the radio frequency regime. Our results thus pave the way for the design of efficient quantum memories and quantum operations. Finally, employing the PRFT, we propose a quantum communication protocol that can significantly outperform the state-of-art few-photon protocols by two orders of magnitude or better. The PRFT potentially leads to insights in various Floquet settings including spectroscopy, thermodynamics, quantum metrology, and quantum simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nature Physics 7, 490 (2011).
  2. R. Roy and F. Harper, Floquet topological phases with symmetry in all dimensions, Phys. Rev. B 95, 195128 (2017).
  3. M. Lababidi, I. I. Satija, and E. Zhao, Counter-propagating edge modes and topological phases of a kicked quantum hall system, Phys. Rev. Lett. 112, 026805 (2014).
  4. M. S. Rudner and N. H. Lindner, Band structure engineering and non-equilibrium dynamics in Floquet topological insulators, Nature Reviews Physics 2, 229 (2020).
  5. B. Huang and W. V. Liu, Floquet higher-order topological insulators with anomalous dynamical polarization, Phys. Rev. Lett. 124, 216601 (2020).
  6. A. C. Potter, T. Morimoto, and A. Vishwanath, Classification of interacting topological Floquet phases in one dimension, Phys. Rev. X 6, 041001 (2016).
  7. N. Ng and M. Kolodrubetz, Many-body localization in the presence of a central qudit, Phys. Rev. Lett. 122, 240402 (2019).
  8. K. Sacha and J. Zakrzewski, Time crystals: A review, Rep. Prog. Phys. 81, 016401 (2017).
  9. V. Khemani, R. Moessner, and S. L. Sondhi, A brief history of time crystals, arXiv:1910.10745  (2019).
  10. K. Sacha, Modeling spontaneous breaking of time-translation symmetry, Phys. Rev. A 91, 033617 (2015).
  11. C. W. von Keyserlingk, V. Khemani, and S. L. Sondhi, Absolute stability and spatiotemporal long-range order in Floquet systems, Phys. Rev. B 94, 085112 (2016).
  12. D. V. Else, B. Bauer, and C. Nayak, Floquet time crystals, Phys. Rev. Lett. 117, 090402 (2016).
  13. B. Huang, Y.-H. Wu, and W. V. Liu, Clean Floquet time crystals: models and realizations in cold atoms, Phys. Rev. Lett. 120, 110603 (2018).
  14. S. Choudhury, Route to extend the lifetime of a discrete time crystal in a finite spin chain without disorder, Atoms 9, 25 (2021).
  15. X. Yang and Z. Cai, Dynamical transitions and critical behavior between discrete time crystal phases, Phys. Rev. Lett. 126, 020602 (2021).
  16. G. Engelhardt, G. Platero, and J. Cao, Discontinuities in Driven Spin-Boson Systems due to Coherent Destruction of Tunneling: Breakdown of the Floquet-Gibbs Distribution, Phys. Rev. Lett. 123, 120602 (2019).
  17. B. Gu and I. Franco, Optical absorption properties of laser-driven matter, Phys. Rev. A 98, 063412 (2018).
  18. S. Choi, N. Y. Yao, and M. D. Lukin, Quantum metrology based on strongly correlated matter, arXiv preprint arXiv:1801.00042  (2017b).
  19. C. Weitenberg and J. Simonet, Tailoring quantum gases by Floquet engineering, Nature Physics 17, 1342 (2021).
  20. S. Choudhury and E. J. Mueller, Stability of a Floquet Bose-Einstein condensate in a one-dimensional optical lattice, Phys. Rev. A 90, 013621 (2014).
  21. S. Choudhury and E. J. Mueller, Stability of a bose-einstein condensate in a driven optical lattice: Crossover between weak and tight transverse confinement, Phys. Rev. A 92, 063639 (2015a).
  22. S. Choudhury and E. J. Mueller, Transverse collisional instabilities of a Bose-Einstein condensate in a driven one-dimensional lattice, Phys. Rev. A 91, 023624 (2015b).
  23. C. Sträter, S. C. L. Srivastava, and A. Eckardt, Floquet realization and signatures of one-dimensional anyons in an optical lattice, Phys. Rev. Lett. 117, 205303 (2016).
  24. J. H. Shirley, Solution of the Schrödinger equation with a Hamiltonian periodic in time, Phys. Rev. 138, B979 (1965).
  25. M. L. and W. M., Optical coherence and quantum optics (Cambridge University Press, New York, 2008).
  26. X. Wang, E. Ronca, and M. A. Sentef, Cavity quantum electrodynamical Chern insulator: Towards light-induced quantized anomalous Hall effect in graphene, Phys. Rev. B 99, 235156 (2019).
  27. F. Schlawin, D. M. Kennes, and M. A. Sentef, Cavity quantum materials, Applied Physics Reviews 9, 011312 (2022).
  28. J. Li and M. Eckstein, Manipulating intertwined orders in solids with quantum light, Phys. Rev. Lett. 125, 217402 (2020).
  29. B. Gulácsi and B. Dóra, From Floquet to Dicke: quantum spin Hall insulator interacting with quantum light, Phys. Rev. Lett. 115, 160402 (2015).
  30. C. Schäfer, M. Ruggenthaler, and A. Rubio, Ab initio nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling, Phys. Rev. A 98, 043801 (2018).
  31. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  32. L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence, Optics letters 4, 205 (1979).
  33. R. J. Cook, Photon number statistics in resonance fluorescence, Phys. Rev. A 23, 1243 (1981).
  34. L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, Journal of Mathematical Physics 37, 4845 (1996).
  35. T. Brandes, Waiting times and noise in single particle transport, Ann. Phys. (Berlin) 17, 477 (2008).
  36. G. Engelhardt and J. Cao, Tuning the Aharonov-Bohm effect with dephasing in nonequilibrium transport, Phys. Rev. B 99, 075436 (2019).
  37. D. Dasenbrook, C. Flindt, and M. Büttiker, Floquet theory of electron waiting times in quantum-coherent conductors, Phys. Rev. Lett. 112, 146801 (2014).
  38. H. K. Yadalam and U. Harbola, Statistics of an adiabatic charge pump, Phys. Rev. B 93, 035312 (2016).
  39. C. W. Groth, B. Michaelis, and C. W. J. Beenakker, Counting statistics of coherent population trapping in quantum dots, Phys. Rev. B 74, 125315 (2006).
  40. E. Kleinherbers, P. Stegmann, and J. König, Revealing attractive electron–electron interaction in a quantum dot by full counting statistics, New Journal of Physics 20, 073023 (2018).
  41. M. Benito, M. Niklas, and S. Kohler, Full-counting statistics of time-dependent conductors, Phys. Rev. B 94, 195433 (2016).
  42. T. D. Honeychurch and D. S. Kosov, Full counting statistics for electron transport in periodically driven quantum dots, Phys. Rev. B 102, 195409 (2020).
  43. J.-M. Stephan and F. Pollmann, Full counting statistics in the Haldane-Shastry chain, Phys. Rev. B 95, 035119 (2017).
  44. S. Groha, F. Essler, and P. Calabrese, Full counting statistics in the transverse field Ising chain, SciPost Physics 4, 043 (2018).
  45. M. Pletyukhov and V. Gritsev, Quantum theory of light scattering in a one-dimensional channel: Interaction effect on photon statistics and entanglement entropy, Phys. Rev. A 91, 063841 (2015).
  46. X. H. H. Zhang and H. U. Baranger, Quantum interference and complex photon statistics in waveguide qed, Phys. Rev. A 97, 023813 (2018).
  47. F. Brange, P. Menczel, and C. Flindt, Photon counting statistics of a microwave cavity, Phys. Rev. B 99, 085418 (2019).
  48. K. N. Nesterov, I. V. Pechenezhskiy, and M. G. Vavilov, Counting statistics of microwave photons in circuit QED, Phys. Rev. A 101, 052321 (2020).
  49. G. Engelhardt and G. Schaller, Maxwell’s demon in the quantum-Zeno regime and beyond, New Journal of Physics 20, 023011 (2018).
  50. I. Klich and L. Levitov, Quantum noise as an entanglement meter, Phys. Rev. Lett. 102, 100502 (2009).
  51. B. Lacroix-A-Chez-Toine, S. N. Majumdar, and G. Schehr, Rotating trapped fermions in two dimensions and the complex ginibre ensemble: Exact results for the entanglement entropy and number variance, Phys. Rev. A 99, 021602(R) (2019).
  52. D. M. Long, P. J. D. Crowley, and A. Chandran, Nonadiabatic topological energy pumps with quasiperiodic driving, Phys. Rev. Lett. 126, 106805 (2021).
  53. P. J. D. Crowley, I. Martin, and A. Chandran, Half-integer quantized topological response in quasiperiodically driven quantum systems, Phys. Rev. Lett. 125, 100601 (2020).
  54. P. J. D. Crowley, I. Martin, and A. Chandran, Topological classification of quasiperiodically driven quantum systems, Phys. Rev. B 99, 064306 (2019).
  55. J. Gea-Banacloche, Collapse and revival of the state vector in the jaynes-cummings model: An example of state preparation by a quantum apparatus, Phys. Rev. Lett. 65, 3385 (1990).
  56. J. Gea-Banacloche, Atom- and field-state evolution in the jaynes-cummings model for large initial fields, Phys. Rev. A 44, 5913 (1991).
  57. J. Gea-Banacloche, Some implications of the quantum nature of laser fields for quantum computations, Phys. Rev. A 65, 022308 (2002).
  58. S. J. D. Phoenix and P. L. Knight, Establishment of an entangled atom-field state in the jaynes-cummings model, Phys. Rev. A 44, 6023 (1991).
  59. A. Z. Goldberg and A. M. Steinberg, Transcoherent states: Optical states for maximal generation of atomic coherence, PRX Quantum 1, 020306 (2020).
  60. T. Brandes, R. Aguado, and G. Platero, Charge transport through open driven two-level systems with dissipation, Phys. Rev. B 69, 205326 (2004).
  61. J. Cerrillo, M. Buser, and T. Brandes, Nonequilibrium quantum transport coefficients and transient dynamics of full counting statistics in the strong-coupling and non-Markovian regimes, Phys. Rev. B 94, 214308 (2016).
  62. P. P. Hofer and A. A. Clerk, Negative full counting statistics arise from interference effects, Phys. Rev. Lett. 116, 013603 (2016).
  63. M. Hayashi, Quantum Information Theory (Springer Berlin, Heidelberg, 2017).
  64. M. M. Wilde, Quantum Information Theory, 2nd ed. (Cambridge University Press, 2017).
  65. G. Wang, C. Li, and P. Cappellaro, Observation of symmetry-protected selection rules in periodically driven quantum systems, Phys. Rev. Lett. 127, 140604 (2021).
  66. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77, 633 (2005).
  67. D. A. Lidar and B. T. A., eds., Quantum Error Correction (Cambridge University Press, 2013).
  68. P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
  69. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge Unversity Press, 1997).
  70. S. Mukamel, Principles of nonlinear optical spectroscopy (OXFORD UNIVERSITY PRESS, 1995).
  71. K. Schönhammer, Full counting statistics for noninteracting fermions: Exact results and the levitov-lesovik formula, Phys. Rev. B 75, 205329 (2007).
  72. Z. Li, S. Choudhury, and W. V. Liu, Fast scrambling without appealing to holographic duality, Phys. Rev. Research 2, 043399 (2020).
  73. Z. Li, S. Choudhury, and W. V. Liu, Long-range-ordered phase in a quantum heisenberg chain with interactions beyond nearest neighbors, Phys. Rev. A 104, 013303 (2021).
  74. S. R. Koshkaki and M. H. Kolodrubetz, Inverted many-body mobility edge in a central qudit problem, Phys. Rev. B 105, L060303 (2022).
  75. P. Saugmann and J. Larson, Fock-state-lattice approach to quantum optics, Phys. Rev. A 108, 033721 (2023).
  76. E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE 51, 89 (1963).
  77. B. W. Shore and P. L. Knight, The Jaynes-Cummings model, Journal of Modern Optics 40, 1195 (1993).
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com