Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BrainCog: A Spiking Neural Network based Brain-inspired Cognitive Intelligence Engine for Brain-inspired AI and Brain Simulation (2207.08533v2)

Published 18 Jul 2022 in cs.NE

Abstract: Spiking neural networks (SNNs) have attracted extensive attentions in Brain-inspired Artificial Intelligence and computational neuroscience. They can be used to simulate biological information processing in the brain at multiple scales. More importantly, SNNs serve as an appropriate level of abstraction to bring inspirations from brain and cognition to Artificial Intelligence. In this paper, we present the Brain-inspired Cognitive Intelligence Engine (BrainCog) for creating brain-inspired AI and brain simulation models. BrainCog incorporates different types of spiking neuron models, learning rules, brain areas, etc., as essential modules provided by the platform. Based on these easy-to-use modules, BrainCog supports various brain-inspired cognitive functions, including Perception and Learning, Decision Making, Knowledge Representation and Reasoning, Motor Control, and Social Cognition. These brain-inspired AI models have been effectively validated on various supervised, unsupervised, and reinforcement learning tasks, and they can be used to enable AI models to be with multiple brain-inspired cognitive functions. For brain simulation, BrainCog realizes the function simulation of decision-making, working memory, the structure simulation of the Neural Circuit, and whole brain structure simulation of Mouse brain, Macaque brain, and Human brain. An AI engine named BORN is developed based on BrainCog, and it demonstrates how the components of BrainCog can be integrated and used to build AI models and applications. To enable the scientific quest to decode the nature of biological intelligence and create AI, BrainCog aims to provide essential and easy-to-use building blocks, and infrastructural support to develop brain-inspired spiking neural network based AI, and to simulate the cognitive brains at multiple scales. The online repository of BrainCog can be found at https://github.com/braincog-x.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (172)
  1. W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.
  2. M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),” Scholarpedia, vol. 2, no. 4, p. 1430, 2007.
  3. M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an intuitive and efficient neural simulator,” Elife, vol. 8, p. e47314, 2019.
  4. D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in neuroscience, vol. 3, p. 26, 2009.
  5. P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-timing-dependent plasticity,” Frontiers in computational neuroscience, vol. 9, p. 99, 2015.
  6. H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi, H. T. Siegelmann, and R. Kozma, “Bindsnet: A machine learning-oriented spiking neural networks library in python,” Frontiers in neuroinformatics, p. 89, 2018.
  7. J. P. Dominguez-Morales, Q. Liu, R. James, D. Gutierrez-Galan, A. Jimenez-Fernandez, S. Davidson, and S. Furber, “Deep spiking neural network model for time-variant signals classification: a real-time speech recognition approach,” in 2018 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2018, pp. 1–8.
  8. S. Loiselle, J. Rouat, D. Pressnitzer, and S. Thorpe, “Exploration of rank order coding with spiking neural networks for speech recognition,” in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., vol. 4.   IEEE, 2005, pp. 2076–2080.
  9. S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-yolo: spiking neural network for energy-efficient object detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 270–11 277.
  10. Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for training high-performance spiking neural networks,” Frontiers in neuroscience, vol. 12, p. 331, 2018.
  11. W. Tan, D. Patel, and R. Kozma, “Strategy and benchmark for converting deep q-networks to event-driven spiking neural networks,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 11, 2021, pp. 9816–9824.
  12. W. Fang, Y. Chen, J. Ding, D. Chen, Z. Yu, H. Zhou, Y. Tian, and other contributors, “Spikingjelly,” https://github.com/fangwei123456/spikingjelly, 2020.
  13. C. Wang, Y. Jiang, X. Liu, X. Lin, X. Zou, Z. Ji, and S. Wu, “A just-in-time compilation approach for neural dynamics simulation,” in Neural Information Processing, T. Mantoro, M. Lee, M. A. Ayu, K. W. Wong, and A. N. Hidayanto, Eds.   Cham: Springer International Publishing, 2021, pp. 15–26.
  14. C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang, and D. Rasmussen, “A large-scale model of the functioning brain,” science, vol. 338, no. 6111, pp. 1202–1205, 2012.
  15. T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith, “Nengo: a python tool for building large-scale functional brain models,” Frontiers in neuroinformatics, vol. 7, p. 48, 2014.
  16. Y. Zeng, C. Liu, and T. Tan, “Retrospect and outlook of brain-inspired intelligence research (in chinese),” The Chinese Journal of Computers, vol. 39, no. 1, pp. 212–222, 2016.
  17. G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type,” Journal of neuroscience, vol. 18, no. 24, pp. 10 464–10 472, 1998.
  18. Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks,” Front. Neurosci., vol. 12, p. 331, May 2018.
  19. H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going Deeper With Directly-Trained Larger Spiking Neural Networks,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 12, pp. 11 062–11 070, May 2021.
  20. W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian, “Incorporating Learnable Membrane Time Constant to Enhance Learning of Spiking Neural Networks,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV).   Montreal, QC, Canada: IEEE, Oct. 2021, pp. 2641–2651.
  21. Y. Li, S. Deng, X. Dong, R. Gong, and S. Gu, “A free lunch from ann: Towards efficient, accurate spiking neural networks calibration,” arXiv preprint arXiv:2106.06984, 2021.
  22. B. Han and K. Roy, “Deep spiking neural network: Energy efficiency through time based coding,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16.   Springer, 2020, pp. 388–404.
  23. B. Han, G. Srinivasan, and K. Roy, “Rmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13 558–13 567.
  24. Y. Wang and Y. Zeng, “Multisensory concept learning framework based on spiking neural networks,” Frontiers in Systems Neuroscience, vol. 16, 2022. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnsys.2022.845177
  25. Y. Sun, Y. Zeng, and T. Zhang, “Quantum superposition inspired spiking neural network,” iScience, vol. 24, no. 8, p. 102880, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2589004221008488
  26. F. Zhao, Y. Zeng, G. Wang, J. Bai, and B. Xu, “A brain-inspired decision making model based on top-down biasing of prefrontal cortex to basal ganglia and its application in autonomous uav explorations,” Cognitive Computation, vol. 10, no. 2, pp. 296–306, 2018.
  27. Y. Sun, Y. Zeng, and Y. Li, “Solving the spike feature information vanishing problem in spiking deep q network with potential based normalization,” arXiv preprint arXiv:2206.03654, 2022.
  28. Q. Liang, Y. Zeng, and B. Xu, “Temporal-sequential learning with a brain-inspired spiking neural network and its application to musical memory,” Frontiers in Computational Neuroscience, vol. 14, p. 51, 07 2020.
  29. Q. Liang and Y. Zeng, “Stylistic composition of melodies based on a brain-inspired spiking neural network,” Frontiers in systems neuroscience, vol. 15, p. 21, 2021.
  30. H. Fang, Y. Zeng, and F. Zhao, “Brain inspired sequences production by spiking neural networks with reward-modulated stdp,” Frontiers in Computational Neuroscience, vol. 15, p. 8, 2021.
  31. H. Fang, Y. Zeng, J. Tang, Y. Wang, Y. Liang, and X. Liu, “Brain-inspired graph spiking neural networks for commonsense knowledge representation and reasoning,” arXiv preprint arXiv:2207.05561, 2022.
  32. H. Fang and Y. Zeng, “A brain-inspired causal reasoning model based on spiking neural networks,” in 2021 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2021, pp. 1–5.
  33. Y. Zeng, Y. Zhao, J. Bai, and B. Xu, “Toward robot self-consciousness (ii): brain-inspired robot bodily self model for self-recognition,” Cognitive Computation, vol. 10, no. 2, pp. 307–320, 2018.
  34. Z. Zhao, E. Lu, F. Zhao, Y. Zeng, and Y. Zhao, “A brain-inspired theory of mind spiking neural network for reducing safety risks of other agents,” Frontiers in neuroscience, p. 446, 2022.
  35. F. Zhao, Y. Zeng, A. Guo, H. Su, and B. Xu, “A neural algorithm for drosophila linear and nonlinear decision-making,” Scientific Reports, vol. 10, no. 1, pp. 1–16, 2020.
  36. Q. Zhang, Y. Zeng, T. Zhang, and T. Yang, “Comparison between human and rodent neurons for persistent activity performance: A biologically plausible computational investigation,” Frontiers in systems neuroscience, p. 98, 2021.
  37. L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907),” Brain research bulletin, vol. 50, no. 5-6, pp. 303–304, 1999.
  38. Fourcaud-Trocmé, Nicolas, Hansel, David, V. Vreeswijk, Carl, and Brunel, “How spike generation mechanisms determine the neuronal response to fluctuating inputs.” Journal of Neuroscience, 2003.
  39. R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model as an effective description of neuronal activity,” Journal of neurophysiology, vol. 94, no. 5, pp. 3637–3642, 2005.
  40. E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.
  41. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of physiology, vol. 117, no. 4, p. 500, 1952.
  42. G. Wang, Y. Zeng, and B. Xu, “A spiking neural network based autonomous reinforcement learning model and its application in decision making,” in International Conference on Brain Inspired Cognitive Systems.   Springer, 2016, pp. 125–137.
  43. D. J. Amit, N. Brunel, and M. Tsodyks, “Correlations of cortical hebbian reverberations: theory versus experiment,” Journal of Neuroscience, vol. 14, no. 11, pp. 6435–6445, 1994.
  44. E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex,” Journal of Neuroscience, vol. 2, no. 1, pp. 32–48, 1982.
  45. W. Maass and H. Markram, “Synapses as dynamic memory buffers,” Neural Networks, vol. 15, no. 2, pp. 155–161, 2002.
  46. E. M. Izhikevich, “Solving the distal reward problem through linkage of stdp and dopamine signaling,” Cerebral Cortex, vol. 17, pp. 2443–2452, 2007.
  47. E. D. Adrian and Y. Zotterman, “The impulses produced by sensory nerve endings: Part 3. impulses set up by touch and pressure,” The Journal of physiology, vol. 61, no. 4, p. 465, 1926.
  48. J. Kim, H. Kim, S. Huh, J. Lee, and K. Choi, “Deep neural networks with weighted spikes,” Neurocomputing, vol. 311, pp. 373–386, 2018.
  49. S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human visual system,” nature, vol. 381, no. 6582, pp. 520–522, 1996.
  50. B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural networks using sparse temporal coding,” in 2018 IEEE international symposium on circuits and systems (ISCAS).   IEEE, 2018, pp. 1–5.
  51. S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation in temporally encoded networks of spiking neurons,” Neurocomputing, vol. 48, no. 1-4, pp. 17–37, 2002.
  52. R. Quian Quiroga and S. Panzeri, “Extracting information from neuronal populations: information theory and decoding approaches,” Nature Reviews Neuroscience, vol. 10, no. 3, pp. 173–185, 2009.
  53. D. Li, J. Wu, and D. Peng, “Online traffic accident spatial-temporal post-impact prediction model on highways based on spiking neural networks,” Journal of advanced transportation, vol. 2021, 2021.
  54. V. S. Chakravarthy, D. Joseph, and R. S. Bapi, “What do the basal ganglia do? a modeling perspective,” Biological cybernetics, vol. 103, no. 3, pp. 237–253, 2010.
  55. P. Redgrave, T. J. Prescott, and K. Gurney, “The basal ganglia: a vertebrate solution to the selection problem?” Neuroscience, vol. 89, no. 4, pp. 1009–1023, 1999.
  56. A. Parent and L.-N. Hazrati, “Functional anatomy of the basal ganglia. i. the cortico-basal ganglia-thalamo-cortical loop,” Brain research reviews, vol. 20, no. 1, pp. 91–127, 1995.
  57. J. L. Lanciego, N. Luquin, and J. A. Obeso, “Functional neuroanatomy of the basal ganglia,” Cold Spring Harbor perspectives in medicine, vol. 2, no. 12, p. a009621, 2012.
  58. A. Bechara, H. Damasio, D. Tranel, and S. W. Anderson, “Dissociation of working memory from decision making within the human prefrontal cortex,” Journal of neuroscience, vol. 18, no. 1, pp. 428–437, 1998.
  59. S. G. Rao, G. V. Williams, and P. S. Goldman-Rakic, “Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in pfc,” Journal of neurophysiology, vol. 81, no. 4, pp. 1903–1916, 1999.
  60. M. D’Esposito, B. R. Postle, and B. Rypma, “Prefrontal cortical contributions to working memory: evidence from event-related fmri studies,” Executive control and the frontal lobe: Current issues, pp. 3–11, 2000.
  61. A. H. Lara and J. D. Wallis, “The role of prefrontal cortex in working memory: a mini review,” Frontiers in systems neuroscience, vol. 9, p. 173, 2015.
  62. J. N. Wood and J. Grafman, “Human prefrontal cortex: processing and representational perspectives,” Nature reviews neuroscience, vol. 4, no. 2, pp. 139–147, 2003.
  63. K. L. Macuga and S. H. Frey, “Selective responses in right inferior frontal and supramarginal gyri differentiate between observed movements of oneself vs. another,” Neuropsychologia, vol. 49, no. 5, pp. 1202–1207, 2011.
  64. B. Milner, L. R. Squire, and E. R. Kandel, “Cognitive neuroscience and the study of memory,” Neuron, vol. 20, p. 445–468, 1998.
  65. M. L. Smith and B. Milner, “The role of the right hippocampus in the recall of spatial location,” Neuropsychologia, vol. 19, no. 6, pp. 781–793, 1981.
  66. Y. Dan and M.-m. Poo, “Spike timing-dependent plasticity of neural circuits,” Neuron, vol. 44, no. 1, pp. 23–30, 2004.
  67. A. D. Craig, “How do you feel—now? the anterior insula and human awareness,” Nature reviews neuroscience, vol. 10, no. 1, pp. 59–70, 2009.
  68. E. M. Izhikevich and G. M. Edelman, “Large-scale model of mammalian thalamocortical systems,” Proceedings of the National Academy of Sciences, vol. 105, no. 9, pp. 3593–3598, 2008. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.0712231105
  69. A. Ishai, L. G. Ungerleider, A. Martin, J. L. Schouten, and J. V. Haxby, “Distributed representation of objects in the human ventral visual pathway,” Proceedings of the National Academy of Sciences, vol. 96, no. 16, pp. 9379–9384, 1999.
  70. E. Kobatake and K. Tanaka, “Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex,” Journal of neurophysiology, vol. 71, no. 3, pp. 856–867, 1994.
  71. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” The Journal of physiology, vol. 160, no. 1, p. 106, 1962.
  72. G. Geldberg, “Supplementary motor area structure and function: review and hypothesis,” Behav Brain Sci., vol. 8, pp. 567–615, 1985.
  73. H. Mushiake, M. Inase, and J. Tanji, “Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements,” Journal of neurophysiology, vol. 66, no. 3, pp. 705–718, 1991.
  74. C. Gerloff, B. Corwell, R. Chen, M. Hallett, and L. G. Cohen, “Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences.” Brain: a journal of neurology, vol. 120, no. 9, pp. 1587–1602, 1997.
  75. A. P. Georgopoulos, “Motor cortex and cognitive processing.” 1995.
  76. S. Kakei, D. S. Hoffman, and P. L. Strick, “Muscle and movement representations in the primary motor cortex,” Science, vol. 285, no. 5436, pp. 2136–2139, 1999.
  77. P. L. Strick, R. P. Dum, J. A. Fiez et al., “Cerebellum and nonmotor function,” Annual review of neuroscience, vol. 32, no. 1, pp. 413–434, 2009.
  78. R. S. Zucker and W. G. Regehr, “Short-term synaptic plasticity,” Annual review of physiology, vol. 64, no. 1, pp. 355–405, 2002.
  79. A. Tavanaei and A. S. Maida, “Bio-inspired spiking convolutional neural network using layer-wise sparse coding and stdp learning,” arXiv preprint arXiv:1611.03000, 2016.
  80. ——, “Multi-layer unsupervised learning in a spiking convolutional neural network,” in 2017 International Joint Conference on Neural Networks (IJCNN).   IEEE, 2017, pp. 2023–2030.
  81. P. Falez, P. Tirilly, I. M. Bilasco, P. Devienne, and P. Boulet, “Multi-layered spiking neural network with target timestamp threshold adaptation and stdp,” arXiv preprint arXiv:1904.01908, 2019.
  82. T. Zhang, Y. Zeng, D. Zhao, and M. Shi, “A plasticity-centric approach to train the non-differential spiking neural networks,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
  83. T. Zhang, Y. Zeng, D. Zhao, and B. Xu, “Brain-inspired balanced tuning for spiking neural networks.” in IJCAI, 2018, pp. 1653–1659.
  84. D. J. Felleman and D. E. Van, “Distributed hierarchical processing in the primate cerebral cortex.” Cerebral cortex (New York, NY: 1991), vol. 1, no. 1, pp. 1–47, 1991.
  85. O. Sporns and J. D. Zwi, “The small world of the cerebral cortex,” Neuroinformatics, vol. 2, no. 2, pp. 145–162, 2004.
  86. D. Zhao, Y. Zeng, T. Zhang, M. Shi, and F. Zhao, “Glsnn: A multi-layer spiking neural network based on global feedback alignment and local stdp plasticity,” Frontiers in Computational Neuroscience, vol. 14, 2020.
  87. Y. Bengio, N. Léonard, and A. Courville, “Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation,” Aug. 2013.
  88. S. M. Bohte, “Error-backpropagation in networks of fractionally predictive spiking neurons,” in International Conference on Artificial Neural Networks.   Springer, 2011, pp. 60–68.
  89. G. Shen, D. Zhao, and Y. Zeng, “Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks,” Patterns, p. 100522, 2022.
  90. Y. Dong, D. Zhao, Y. Li, and Y. Zeng, “An unsupervised spiking neural network inspired by biologically plausible learning rules and connections,” 2022. [Online]. Available: https://arxiv.org/abs/2207.02727
  91. Y. Zeng, T. Zhang, and B. Xu, “Improving multi-layer spiking neural networks by incorporating brain-inspired rules,” Science China Information Sciences, vol. 60, no. 5, pp. 1–11, 2017.
  92. Y. Li and Y. Zeng, “Efficient and accurate conversion of spiking neural network with burst spikes,” arXiv preprint arXiv:2204.13271, 2022.
  93. Y. Li, X. He, Y. Dong, Q. Kong, and Y. Zeng, “Spike calibration: Fast and accurate conversion of spiking neural network for object detection and segmentation,” arXiv preprint arXiv:2207.02702, 2022.
  94. C. Blakemore, R. H. Carpenter, and M. A. Georgeson, “Lateral inhibition between orientation detectors in the human visual system,” Nature, vol. 228, no. 5266, pp. 37–39, 1970.
  95. D. Lynott and L. Connell, “Modality exclusivity norms for 423 object properties,” Behavior Research Methods, vol. 41, no. 2, pp. 558–564, 2009.
  96. ——, “Modality exclusivity norms for 400 nouns: The relationship between perceptual experience and surface word form,” Behavior research methods, vol. 45, no. 2, pp. 516–526, 2013.
  97. J. R. Binder, L. L. Conant, C. J. Humphries, L. Fernandino, S. B. Simons, M. Aguilar, and R. H. Desai, “Toward a brain-based componential semantic representation,” Cognitive neuropsychology, vol. 33, no. 3-4, pp. 130–174, 2016.
  98. D. Lynott, L. Connell, M. Brysbaert, J. Brand, and J. Carney, “The lancaster sensorimotor norms: multidimensional measures of perceptual and action strength for 40,000 english words,” Behavior Research Methods, pp. 1–21, 2019.
  99. E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Pasca, and A. Soroa, “A study on similarity and relatedness using distributional and wordnet-based approaches,” 2009.
  100. E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng, “Improving word representations via global context and multiple word prototypes,” in Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2012, pp. 873–882.
  101. K. McRae, G. S. Cree, M. S. Seidenberg, and C. McNorgan, “Semantic feature production norms for a large set of living and nonliving things,” Behavior research methods, vol. 37, no. 4, pp. 547–559, 2005.
  102. B. J. Devereux, L. K. Tyler, J. Geertzen, and B. Randall, “The centre for speech, language and the brain (cslb) concept property norms,” Behavior research methods, vol. 46, no. 4, pp. 1119–1127, 2014.
  103. M. J. Frank and E. D. Claus, “Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal.” Psychological review, vol. 113, no. 2, p. 300, 2006.
  104. I. Silkis, “The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. i. modification rules for excitatory and inhibitory synapses in the striatum,” Biosystems, vol. 57, no. 3, pp. 187–196, 2000.
  105. X. Wang, Z.-G. Hou, F. Lv, M. Tan, and Y. Wang, “Mobile robots’ modular navigation controller using spiking neural networks,” Neurocomputing, vol. 134, pp. 230–238, 2014.
  106. J. C. V. Tieck, L. Steffen, J. Kaiser, A. Roennau, and R. Dillmann, “Controlling a robot arm for target reaching without planning using spiking neurons,” in 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), 2018, pp. 111–116.
  107. G. Tang, N. Kumar, R. Yoo, and K. Michmizos, “Deep reinforcement learning with population-coded spiking neural network for continuous control,” in Conference on Robot Learning.   PMLR, 2021, pp. 2016–2029.
  108. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.
  109. H. Merchant, D. L. Harrington, and W. H. Meck, “Neural basis of the perception and estimation of time,” Annual Review of Neuroscience, vol. 36, no. 1, pp. 313–336, 2013.
  110. N. J. Fortin, K. L. Agster, and H. B. Eichenbaum, “Critical role of the hippocampus in memory for sequences of events,” Nature Neuroscience, vol. 5, no. 5, pp. 458–462, 2002.
  111. B. Krueger, “Classical piano midi page,” 2018. [Online]. Available: http://piano-midi.de/
  112. A. Dietrich, “The cognitive neuroscience of creativity,” Psychonomic bulletin & review, vol. 11, no. 6, pp. 1011–1026, 2004.
  113. R. Jung, B. Mead, J. Carrasco, and R. Barrow, “The structure of creative cognition in the human brain,” Frontiers in Human Neuroence, vol. 7, p. 330, 2013.
  114. Y. Xie, P. Hu, J. Li, J. Chen, W. Song, X.-J. Wang, T. Yang, S. Dehaene, S. Tang, B. Min et al., “Geometry of sequence working memory in macaque prefrontal cortex,” Science, vol. 375, no. 6581, pp. 632–639, 2022.
  115. N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules,” Frontiers in Neural Circuits, vol. 9, p. 85, 2016.
  116. V. C. Pammi, K. P. Miyapuram, R. S. Bapi, and K. Doya, “Chunking phenomenon in complex sequential skill learning in humans,” in International Conference on Neural Information Processing.   Springer, 2004, pp. 294–299.
  117. X. Jiang, T. Long, W. Cao, J. Li, S. Dehaene, and L. Wang, “Production of supra-regular spatial sequences by macaque monkeys,” Current Biology, vol. 28, no. 12, pp. 1851–1859, 2018.
  118. M. L. Schlichting and A. R. Preston, “The hippocampus and memory integration: building knowledge to navigate future decisions,” in The hippocampus from cells to systems.   Springer, 2017, pp. 405–437.
  119. S. Ramirez, X. Liu, P.-A. Lin, J. Suh, M. Pignatelli, R. L. Redondo, T. J. Ryan, and S. Tonegawa, “Creating a false memory in the hippocampus,” Science, vol. 341, no. 6144, pp. 387–391, 2013.
  120. J. C. Robyn Speer and C. Havasi, “Conceptnet 5.5: An open multilingual graph of general knowledge,” vol. abs/1612.03975, 2017. [Online]. Available: http://arxiv.org/abs/1612.03975
  121. M. Sugiura, C. M. Miyauchi, Y. Kotozaki, Y. Akimoto, T. Nozawa, Y. Yomogida, S. Hanawa, Y. Yamamoto, A. Sakuma, S. Nakagawa et al., “Neural mechanism for mirrored self-face recognition,” Cerebral Cortex, vol. 25, no. 9, pp. 2806–2814, 2015.
  122. S. G. Shamay-Tsoory, S. Shur, L. Barcai-Goodman, S. Medlovich, H. Harari, and Y. Levkovitz, “Dissociation of cognitive from affective components of theory of mind in schizophrenia,” Psychiatry Research, vol. 149, no. 1-3, pp. 11–23, Jan. 2007. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0165178106001934
  123. C. L. Sebastian, N. M. G. Fontaine, G. Bird, S.-J. Blakemore, S. A. De Brito, E. J. P. McCrory, and E. Viding, “Neural processing associated with cognitive and affective Theory of mind in adolescents and adults,” Social Cognitive and Affective Neuroscience, vol. 7, no. 1, pp. 53–63, Jan. 2012. [Online]. Available: https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsr023
  124. M. Dennis, N. Simic, E. D. Bigler, T. Abildskov, A. Agostino, H. G. Taylor, K. Rubin, K. Vannatta, C. A. Gerhardt, T. Stancin et al., “Cognitive, affective, and conative theory of mind (ToM) in children with traumatic brain injury,” Developmental cognitive neuroscience, vol. 5, pp. 25–39, 2013.
  125. A. Abu-Akel and S. Shamay-Tsoory, “Neuroanatomical and neurochemical bases of theory of mind,” Neuropsychologia, vol. 49, no. 11, pp. 2971–2984, Sep. 2011. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0028393211003368
  126. C. E. Hartwright, I. A. Apperly, and P. C. Hansen, “Multiple roles for executive control in belief–desire reasoning: Distinct neural networks are recruited for self perspective inhibition and complexity of reasoning,” NeuroImage, vol. 61, no. 4, pp. 921–930, jul 2012. [Online]. Available: https://doi.org/10.1016%2Fj.neuroimage.2012.03.012
  127. ——, “The special case of self-perspective inhibition in mental, but not non-mental, representation,” Neuropsychologia, vol. 67, pp. 183–192, jan 2015. [Online]. Available: https://doi.org/10.1016%2Fj.neuropsychologia.2014.12.015
  128. J. Koster-Hale and R. Saxe, “Theory of mind: a neural prediction problem,” Neuron, vol. 79, no. 5, pp. 836–848, Sep. 2013. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S089662731300754X
  129. S. Suzuki, N. Harasawa, K. Ueno, J. L. Gardner, N. Ichinohe, M. Haruno, K. Cheng, and H. Nakahara, “Learning to simulate others’ decisions,” Neuron, vol. 74, no. 6, pp. 1125–1137, 2012.
  130. G. G. Gallup, “Chimpanzees: self-recognition,” Science, vol. 167, no. 3914, pp. 86–87, 1970.
  131. S. D. Suárez and G. G. Gallup Jr, “Self-recognition in chimpanzees and orangutans, but not gorillas,” Journal of human evolution, vol. 10, no. 2, pp. 175–188, 1981.
  132. V. Walraven, L. Van Elsacker, and R. Verheyen, “Reactions of a group of pygmy chimpanzees (pan paniscus) to their mirror-images: Evidence of self-recognition,” Primates, vol. 36, no. 1, pp. 145–150, 1995.
  133. F. G. Patterson and R. H. Cohn, “Self-recognition and self-awareness in lowland gorillas,” 1994.
  134. S. Posada and M. Colell, “Another gorilla (gorilla gorilla gorilla) recognizes himself in a mirror,” American Journal of Primatology: Official Journal of the American Society of Primatologists, vol. 69, no. 5, pp. 576–583, 2007.
  135. J. M. Plotnik, F. B. De Waal, and D. Reiss, “Self-recognition in an asian elephant,” Proceedings of the National Academy of Sciences, vol. 103, no. 45, pp. 17 053–17 057, 2006.
  136. K. Marten and S. Psarakos, “Evidence of self-awareness in the bottlenose dolphin (tursiops truncatus),” 1994.
  137. F. Delfour and K. Marten, “Mirror image processing in three marine mammal species: killer whales (orcinus orca), false killer whales (pseudorca crassidens) and california sea lions (zalophus californianus),” Behavioural processes, vol. 53, no. 3, pp. 181–190, 2001.
  138. L. Chang, Q. Fang, S. Zhang, M.-m. Poo, and N. Gong, “Mirror-induced self-directed behaviors in rhesus monkeys after visual-somatosensory training,” Current Biology, vol. 25, no. 2, pp. 212–217, 2015.
  139. S. Tang and A. Guo, “Choice behavior of drosophila facing contradictory visual cues,” Science, vol. 294, no. 5546, pp. 1543–1547, 2001.
  140. K. Zhang, J. Z. Guo, Y. Peng, W. Xi, and A. Guo, “Dopamine-mushroom body circuit regulates saliency-based decision-making in drosophila,” science, vol. 316, no. 5833, pp. 1901–1904, 2007.
  141. M. Zhou, N. Chen, J. Tian, J. Zeng, Y. Zhang, X. Zhang, J. Guo, J. Sun, Y. Li, A. Guo et al., “Suppression of gabaergic neurons through d2-like receptor secures efficient conditioning in drosophila aversive olfactory learning,” Proceedings of the National Academy of Sciences, vol. 116, no. 11, pp. 5118–5125, 2019.
  142. E. K. Miller, “The prefontral cortex and cognitive control,” Nature reviews neuroscience, vol. 1, no. 1, pp. 59–65, 2000.
  143. A. Nieder and E. K. Miller, “Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex,” Neuron, vol. 37, no. 1, pp. 149–157, 2003.
  144. S. Bishop, J. Duncan, M. Brett, and A. D. Lawrence, “Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli,” Nature neuroscience, vol. 7, no. 2, pp. 184–188, 2004.
  145. E. Koechlin, C. Ody, and F. Kouneiher, “The architecture of cognitive control in the human prefrontal cortex,” Science, vol. 302, no. 5648, pp. 1181–1185, 2003.
  146. J. Hass, L. Hertäg, and D. Durstewitz, “A detailed data-driven network model of prefrontal cortex reproduces key features of in vivo activity,” PLoS computational biology, vol. 12, no. 5, p. e1004930, 2016.
  147. A. Shapson-Coe, M. Januszewski, D. R. Berger, A. Pope, Y. Wu, T. Blakely, R. L. Schalek, P. H. Li, S. Wang, J. Maitin-Shepard et al., “A connectomic study of a petascale fragment of human cerebral cortex,” BioRxiv, 2021.
  148. C. Beaulieu, “Numerical data on neocortical neurons in adult rat, with special reference to the gaba population,” Brain research, vol. 609, no. 1-2, pp. 284–292, 1993.
  149. J. DeFelipe, “The evolution of the brain, the human nature of cortical circuits, and intellectual creativity,” Frontiers in neuroanatomy, vol. 5, p. 29, 2011.
  150. J. R. Gibson, M. Beierlein, and B. W. Connors, “Two networks of electrically coupled inhibitory neurons in neocortex,” Nature, vol. 402, no. 6757, pp. 75–79, 1999.
  151. W.-J. Gao, Y. Wang, and P. S. Goldman-Rakic, “Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex,” Journal of Neuroscience, vol. 23, no. 5, pp. 1622–1630, 2003.
  152. G. Eyal, M. B. Verhoog, G. Testa-Silva, Y. Deitcher, J. C. Lodder, R. Benavides-Piccione, J. Morales, J. DeFelipe, C. P. de Kock, H. D. Mansvelder et al., “Unique membrane properties and enhanced signal processing in human neocortical neurons,” Elife, vol. 5, p. e16553, 2016.
  153. Q. Zhang, Y. Zeng, and T. Yang, “Computational investigation of contributions from different subtypes of interneurons in prefrontal cortex for information maintenance,” Scientific Reports, vol. 10, no. 1, p. 4671, 2020.
  154. Binzegger, Tom, Douglas, Rodney, J., Martin, Kevan, A., and C., “A quantitative map of the circuit of cat primary visual cortex.” Journal of Neuroscience, vol. 24, no. 39, pp. 8441–8453, 2004.
  155. M. J. Richardson, N. Brunel, and V. Hakim, “From subthreshold to firing-rate resonance,” Journal of neurophysiology, vol. 89, no. 5, pp. 2538–2554, 2003.
  156. X. Jiang, S. Shen, C. R. Cadwell, P. Berens, F. Sinz, A. S. Ecker, S. Patel, and A. S. Tolias, “Principles of connectivity among morphologically defined cell types in adult neocortex,” Science, vol. 350, no. 6264, p. aac9462, 2015.
  157. E. M. Izhikevich and G. M. Edelman, “Large-scale model of mammalian thalamocortical systems,” Proceedings of the national academy of sciences, vol. 105, no. 9, pp. 3593–3598, 2008.
  158. T. Tchumatchenko and C. Clopath, “Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance,” Nature communications, vol. 5, no. 1, pp. 1–9, 2014.
  159. S. W. Oh, J. A. Harris, L. Ng, B. Winslow, N. Cain, S. Mihalas, Q. Wang, C. Lau, L. Kuan, A. M. Henry et al., “A mesoscale connectome of the mouse brain,” Nature, vol. 508, no. 7495, pp. 207–214, 2014.
  160. H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu, “Interneurons of the neocortical inhibitory system,” Nature reviews neuroscience, vol. 5, no. 10, pp. 793–807, 2004.
  161. D. S. Modha and R. Singh, “Network architecture of the long-distance pathways in the macaque brain,” Proceedings of the National Academy of Sciences, vol. 107, no. 30, pp. 13 485–13 490, 2010.
  162. T. Zhang, Y. Zeng, and B. Xu, “A computational approach towards the microscale mouse brain connectome from the mesoscale,” Journal of integrative neuroscience, vol. 16, no. 3, p. 291—306, 2017.
  163. R. Bakker, T. Wachtler, and M. Diesmann, “Cocomac 2.0 and the future of tract-tracing databases,” Frontiers in neuroinformatics, vol. 6, pp. 30–30, Dec 2012.
  164. R. Chaudhuri, K. Knoblauch, M. A. Gariel, H. Kennedy, and X.-J. Wang, “A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex,” Neuron, vol. 88, pp. 419–431, 2015.
  165. C. E. Collins, D. C. Airey, N. A. Young, D. B. Leitch, and J. H. Kaas, “Neuron densities vary across and within cortical areas in primates,” Proceedings of the National Academy of Sciences, vol. 107, no. 36, pp. 15 927–15 932, 2010.
  166. X. Liu, Y. Zeng, T. Zhang, and B. Xu, “Parallel brain simulator: A multi-scale and parallel brain-inspired neural network modeling and simulation platform,” Cognitive Computation, vol. 8, no. 5, pp. 967–981, Oct 2016.
  167. T. L. Davis and P. Sterling, “Microcircuitry of cat visual cortex: Classification of neurons in layer iv of area 17, and identification of the patterns of lateral geniculate input,” Journal of Comparative Neurology, vol. 188, no. 4, pp. 599–627, 1979.
  168. L. Fan, H. Li, J. Zhuo, Y. Zhang, J. Wang, L. Chen, Z. Yang, C. Chu, S. Xie, A. R. Laird, P. T. Fox, S. B. Eickhoff, C. Yu, and T. Jiang, “The human brainnetome atlas: A new brain atlas based on connectional architecture,” Cerebral cortex (New York, N.Y. : 1991), vol. 26, no. 8, pp. 3508–3526, Aug 2016.
  169. A. Klein and J. Tourville, “101 labeled brain images and a consistent human cortical labeling protocol,” Frontiers in neuroscience, vol. 6, pp. 171–171, Dec 2012.
  170. B. Han, F. Zhao, Y. Zeng, and G. Shen, “Developmental plasticity-inspired adaptive pruning for deep spiking and artificial neural networks,” 2022.
  171. G. Shen, D. Zhao, Y. Dong, and Y. Zeng, “Bio-inspired neural architecture search for efficient spiking neural networks,” 2022.
  172. K.-C. Peng, T. Chen, A. Sadovnik, and A. C. Gallagher, “A mixed bag of emotions: Model, predict, and transfer emotion distributions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 860–868.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (19)
  1. Yi Zeng (153 papers)
  2. Dongcheng Zhao (48 papers)
  3. Feifei Zhao (29 papers)
  4. Guobin Shen (37 papers)
  5. Yiting Dong (22 papers)
  6. Enmeng Lu (12 papers)
  7. Qian Zhang (308 papers)
  8. Yinqian Sun (14 papers)
  9. Qian Liang (19 papers)
  10. Yuxuan Zhao (32 papers)
  11. Zhuoya Zhao (5 papers)
  12. Hongjian Fang (5 papers)
  13. Yuwei Wang (60 papers)
  14. Yang Li (1140 papers)
  15. Xin Liu (820 papers)
  16. Chengcheng Du (1 paper)
  17. Qingqun Kong (12 papers)
  18. Zizhe Ruan (4 papers)
  19. Weida Bi (1 paper)
Citations (57)
Github Logo Streamline Icon: https://streamlinehq.com