Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards the Human Global Context: Does the Vision-Language Model Really Judge Like a Human Being? (2207.08333v1)

Published 18 Jul 2022 in cs.CV

Abstract: As computer vision and NLP make progress, Vision-Language(VL) is becoming an important area of research. Despite the importance, evaluation metrics of the research domain is still at a preliminary stage of development. In this paper, we propose a quantitative metric "Equivariance Score" and evaluation dataset "Human Puzzle" to assess whether a VL model is understanding an image like a human. We observed that the VL model does not interpret the overall context of an input image but instead shows biases toward a specific object or shape that forms the local context. We aim to quantitatively measure a model's performance in understanding context. To verify the current existing VL model's capability, we sliced the original input image into pieces and randomly placed them, distorting the global context of the image. Our paper discusses each VL model's level of interpretation on global context and addresses how the structural characteristics influenced the results.

Summary

We haven't generated a summary for this paper yet.