Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Achieve Optimal Adversarial Accuracy for Adversarial Deep Learning using Stackelberg Game (2207.08137v1)

Published 17 Jul 2022 in cs.LG, cs.AI, and cs.GT

Abstract: Adversarial deep learning is to train robust DNNs against adversarial attacks, which is one of the major research focuses of deep learning. Game theory has been used to answer some of the basic questions about adversarial deep learning such as the existence of a classifier with optimal robustness and the existence of optimal adversarial samples for a given class of classifiers. In most previous work, adversarial deep learning was formulated as a simultaneous game and the strategy spaces are assumed to be certain probability distributions in order for the Nash equilibrium to exist. But, this assumption is not applicable to the practical situation. In this paper, we give answers to these basic questions for the practical case where the classifiers are DNNs with a given structure, by formulating the adversarial deep learning as sequential games. The existence of Stackelberg equilibria for these games are proved. Furthermore, it is shown that the equilibrium DNN has the largest adversarial accuracy among all DNNs with the same structure, when Carlini-Wagner's margin loss is used. Trade-off between robustness and accuracy in adversarial deep learning is also studied from game theoretical aspect.

Summary

We haven't generated a summary for this paper yet.