Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comprehensive Empirical Investigation on Failure Clustering in Parallel Debugging (2207.07992v2)

Published 16 Jul 2022 in cs.SE

Abstract: The clustering technique has attracted a lot of attention as a promising strategy for parallel debugging in multi-fault scenarios, this heuristic approach (i.e., failure indexing or fault isolation) enables developers to perform multiple debugging tasks simultaneously through dividing failed test cases into several disjoint groups. When using statement ranking representation to model failures for better clustering, several factors influence clustering effectiveness, including the risk evaluation formula (REF), the number of faults (NOF), the fault type (FT), and the number of successful test cases paired with one individual failed test case (NSP1F). In this paper, we present the first comprehensive empirical study of how these four factors influence clustering effectiveness. We conduct extensive controlled experiments on 1060 faulty versions of 228 simulated faults and 141 real faults, and the results reveal that: 1) GP19 is highly competitive across all REFs, 2) clustering effectiveness decreases as NOF increases, 3) higher clustering effectiveness is easier to achieve when a program contains only predicate faults, and 4) clustering effectiveness remains when the scale of NSP1F is reduced to 20%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yi Song (34 papers)
  2. Xiaoyuan Xie (10 papers)
  3. Quanming Liu (4 papers)
  4. Xihao Zhang (3 papers)
  5. Xi Wu (100 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.