Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Nearly Tight Analysis of Greedy k-means++ (2207.07949v1)

Published 16 Jul 2022 in cs.DS and cs.LG

Abstract: The famous $k$-means++ algorithm of Arthur and Vassilvitskii [SODA 2007] is the most popular way of solving the $k$-means problem in practice. The algorithm is very simple: it samples the first center uniformly at random and each of the following $k-1$ centers is then always sampled proportional to its squared distance to the closest center so far. Afterward, Lloyd's iterative algorithm is run. The $k$-means++ algorithm is known to return a $\Theta(\log k)$ approximate solution in expectation. In their seminal work, Arthur and Vassilvitskii [SODA 2007] asked about the guarantees for its following \emph{greedy} variant: in every step, we sample $\ell$ candidate centers instead of one and then pick the one that minimizes the new cost. This is also how $k$-means++ is implemented in e.g. the popular Scikit-learn library [Pedregosa et al.; JMLR 2011]. We present nearly matching lower and upper bounds for the greedy $k$-means++: We prove that it is an $O(\ell3 \log3 k)$-approximation algorithm. On the other hand, we prove a lower bound of $\Omega(\ell3 \log3 k / \log2(\ell\log k))$. Previously, only an $\Omega(\ell \log k)$ lower bound was known [Bhattacharya, Eube, R\"oglin, Schmidt; ESA 2020] and there was no known upper bound.

Citations (8)

Summary

We haven't generated a summary for this paper yet.