Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial Disentanglement via Mechanism Sparsity (2207.07732v1)

Published 15 Jul 2022 in stat.ML and cs.LG

Abstract: Disentanglement via mechanism sparsity was introduced recently as a principled approach to extract latent factors without supervision when the causal graph relating them in time is sparse, and/or when actions are observed and affect them sparsely. However, this theory applies only to ground-truth graphs satisfying a specific criterion. In this work, we introduce a generalization of this theory which applies to any ground-truth graph and specifies qualitatively how disentangled the learned representation is expected to be, via a new equivalence relation over models we call consistency. This equivalence captures which factors are expected to remain entangled and which are not based on the specific form of the ground-truth graph. We call this weaker form of identifiability partial disentanglement. The graphical criterion that allows complete disentanglement, proposed in an earlier work, can be derived as a special case of our theory. Finally, we enforce graph sparsity with constrained optimization and illustrate our theory and algorithm in simulations.

Citations (22)

Summary

We haven't generated a summary for this paper yet.