Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OSCAR: A Semantic-based Data Binning Approach (2207.07727v1)

Published 15 Jul 2022 in cs.HC

Abstract: Binning is applied to categorize data values or to see distributions of data. Existing binning algorithms often rely on statistical properties of data. However, there are semantic considerations for selecting appropriate binning schemes. Surveys, for instance, gather respondent data for demographic-related questions such as age, salary, number of employees, etc., that are bucketed into defined semantic categories. In this paper, we leverage common semantic categories from survey data and Tableau Public visualizations to identify a set of semantic binning categories. We employ these semantic binning categories in OSCAR: a method for automatically selecting bins based on the inferred semantic type of the field. We conducted a crowdsourced study with 120 participants to better understand user preferences for bins generated by OSCAR vs. binning provided in Tableau. We find that maps and histograms using binned values generated by OSCAR are preferred by users as compared to binning schemes based purely on the statistical properties of the data.

Citations (5)

Summary

We haven't generated a summary for this paper yet.