Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

FLIP: A Utility Preserving Privacy Mechanism for Time Series (2207.07721v1)

Published 15 Jul 2022 in cs.CR and stat.ME

Abstract: Guaranteeing privacy in released data is an important goal for data-producing agencies. There has been extensive research on developing suitable privacy mechanisms in recent years. Particularly notable is the idea of noise addition with the guarantee of differential privacy. There are, however, concerns about compromising data utility when very stringent privacy mechanisms are applied. Such compromises can be quite stark in correlated data, such as time series data. Adding white noise to a stochastic process may significantly change the correlation structure, a facet of the process that is essential to optimal prediction. We propose the use of all-pass filtering as a privacy mechanism for regularly sampled time series data, showing that this procedure preserves utility while also providing sufficient privacy guarantees to entity-level time series.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.