Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning inducing points and uncertainty on molecular data by scalable variational Gaussian processes (2207.07654v3)

Published 16 Jul 2022 in physics.chem-ph, cs.LG, and physics.comp-ph

Abstract: Uncertainty control and scalability to large datasets are the two main issues for the deployment of Gaussian process (GP) models within the autonomous machine learning-based prediction pipelines in material science and chemistry. One way to address both of these issues is by introducing the latent inducing point variables and choosing the right approximation for the marginal log-likelihood objective. Here, we empirically show that variational learning of the inducing points in a molecular descriptor space improves the prediction of energies and atomic forces on two molecular dynamics datasets. First, we show that variational GPs can learn to represent the configurations of the molecules of different types that were not present within the initialization set of configurations. We provide a comparison of alternative log-likelihood training objectives and variational distributions. Among several evaluated approximate marginal log-likelihood objectives, we show that predictive log-likelihood provides excellent uncertainty estimates at the slight expense of predictive quality. Furthermore, we extend our study to a large molecular crystal system, showing that variational GP models perform well for predicting atomic forces by efficiently learning a sparse representation of the dataset.

Summary

We haven't generated a summary for this paper yet.