Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Usefulness of Deep Ensemble Diversity for Out-of-Distribution Detection (2207.07517v2)

Published 15 Jul 2022 in cs.LG, cs.AI, and cs.CV

Abstract: The ability to detect Out-of-Distribution (OOD) data is important in safety-critical applications of deep learning. The aim is to separate In-Distribution (ID) data drawn from the training distribution from OOD data using a measure of uncertainty extracted from a deep neural network. Deep Ensembles are a well-established method of improving the quality of uncertainty estimates produced by deep neural networks, and have been shown to have superior OOD detection performance compared to single models. An existing intuition in the literature is that the diversity of Deep Ensemble predictions indicates distributional shift, and so measures of diversity such as Mutual Information (MI) should be used for OOD detection. We show experimentally that this intuition is not valid on ImageNet-scale OOD detection -- using MI leads to 30-40% worse %FPR@95 compared to single-model entropy on some OOD datasets. We suggest an alternative explanation for Deep Ensembles' better OOD detection performance -- OOD detection is binary classification and we are ensembling diverse classifiers. As such we show that practically, even better OOD detection performance can be achieved for Deep Ensembles by averaging task-specific detection scores such as Energy over the ensemble.

Citations (14)

Summary

We haven't generated a summary for this paper yet.