Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computer Vision for Volunteer Cotton Detection in a Corn Field with UAS Remote Sensing Imagery and Spot Spray Applications (2207.07334v1)

Published 15 Jul 2022 in eess.IV and cs.AI

Abstract: To control boll weevil (Anthonomus grandis L.) pest re-infestation in cotton fields, the current practices of volunteer cotton (VC) (Gossypium hirsutum L.) plant detection in fields of rotation crops like corn (Zea mays L.) and sorghum (Sorghum bicolor L.) involve manual field scouting at the edges of fields. This leads to many VC plants growing in the middle of fields remain undetected that continue to grow side by side along with corn and sorghum. When they reach pinhead squaring stage (5-6 leaves), they can serve as hosts for the boll weevil pests. Therefore, it is required to detect, locate and then precisely spot-spray them with chemicals. In this paper, we present the application of YOLOv5m on radiometrically and gamma-corrected low resolution (1.2 Megapixel) multispectral imagery for detecting and locating VC plants growing in the middle of tasseling (VT) growth stage of cornfield. Our results show that VC plants can be detected with a mean average precision (mAP) of 79% and classification accuracy of 78% on images of size 1207 x 923 pixels at an average inference speed of nearly 47 frames per second (FPS) on NVIDIA Tesla P100 GPU-16GB and 0.4 FPS on NVIDIA Jetson TX2 GPU. We also demonstrate the application of a customized unmanned aircraft systems (UAS) for spot-spray applications based on the developed computer vision (CV) algorithm and how it can be used for near real-time detection and mitigation of VC plants growing in corn fields for efficient management of the boll weevil pests.

Citations (4)

Summary

We haven't generated a summary for this paper yet.