Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancement by Your Aesthetic: An Intelligible Unsupervised Personalized Enhancer for Low-Light Images (2207.07317v1)

Published 15 Jul 2022 in cs.CV and cs.AI

Abstract: Low-light image enhancement is an inherently subjective process whose targets vary with the user's aesthetic. Motivated by this, several personalized enhancement methods have been investigated. However, the enhancement process based on user preferences in these techniques is invisible, i.e., a "black box". In this work, we propose an intelligible unsupervised personalized enhancer (iUPEnhancer) for low-light images, which establishes the correlations between the low-light and the unpaired reference images with regard to three user-friendly attributions (brightness, chromaticity, and noise). The proposed iUP-Enhancer is trained with the guidance of these correlations and the corresponding unsupervised loss functions. Rather than a "black box" process, our iUP-Enhancer presents an intelligible enhancement process with the above attributions. Extensive experiments demonstrate that the proposed algorithm produces competitive qualitative and quantitative results while maintaining excellent flexibility and scalability. This can be validated by personalization with single/multiple references, cross-attribution references, or merely adjusting parameters.

Citations (11)

Summary

We haven't generated a summary for this paper yet.