Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Globally stable blowup profile for supercritical wave maps in all dimensions (2207.06952v2)

Published 14 Jul 2022 in math.AP, math-ph, math.DG, and math.MP

Abstract: We consider wave maps from the $(1+d)$-dimensional Minkowski space into the $d$-sphere. It is known from the work of Bizo\'n and Biernat \cite{BizBie15} that in the energy-supercritical case, i.e., for $d \geq 3$, this model admits a closed-form corotational self-similar blowup solution. We show that this blowup profile is globally nonlinearly stable for all $d \geq 3$, thereby verifying a perturbative version of the conjecture posed in \cite{BizBie15} about the generic large data blowup behavior for this model. To accomplish this, we develop a novel stability analysis approach based on similarity variables posed on the whole space $\mathbb{R}d$. As a result, we draw a general road map for studying spatially global stability of self-similar blowup profiles for nonlinear wave equations in the radial case for arbitrary dimension $d \geq 3$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. Threshold for blowup for equivariant wave maps in higher dimensions. Nonlinearity, 30(4):1513–1522, 2017.
  2. Hyperboloidal similarity coordinates and a globally stable blowup profile for supercritical wave maps. Int. Math. Res. Not. IMRN, (21):16530–16591, 2021.
  3. Piotr Bizoń. Equivariant self-similar wave maps from Minkowski spacetime into 3-sphere. Comm. Math. Phys., 215(1):45–56, 2000.
  4. Piotr Bizoń. Threshold behavior for nonlinear wave equations. volume 8, pages 35–41. 2001. Nonlinear evolution equations and dynamical systems (Kolimbary, 1999).
  5. Piotr Bizoń. An unusual eigenvalue problem. Acta Phys. Polon. B, 36(1):5–15, 2005.
  6. Generic self-similar blowup for equivariant wave maps and Yang-Mills fields in higher dimensions. Comm. Math. Phys., 338(3):1443–1450, 2015.
  7. Dispersion and collapse of wave maps. Nonlinearity, 13(4):1411–1423, 2000.
  8. Formation of singularities for equivariant (2+1)21(2+1)( 2 + 1 )-dimensional wave maps into the 2-sphere. Nonlinearity, 14(5):1041–1053, 2001.
  9. On the division problem for the wave maps equation. Ann. PDE, 4(2):Paper No. 17, 61, 2018.
  10. An introduction to semilinear evolution equations, volume 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998.
  11. On blowup of co-rotational wave maps in odd space dimensions. J. Differential Equations, 263(8):5090–5119, 2017.
  12. Mode stability of self-similar wave maps in higher dimensions. Comm. Math. Phys., 351(3):959–972, 2017.
  13. A proof for the mode stability of a self-similar wave map. Nonlinearity, 29(8):2451–2473, 2016.
  14. On blowup for the supercritical quadratic wave equation. to appear in Analysis & PDE, page arXiv:2109.11931.
  15. Roland Donninger. Asymptotics and analytic modes for the wave equation in similarity coordinates. J. Evol. Equ., 9(3):511–523, 2009.
  16. Roland Donninger. Nonlinear stability of self-similar solutions for semilinear wave equations. Comm. Partial Differential Equations, 35(4):669–684, 2010.
  17. Roland Donninger. The radial wave operator in similarity coordinates. J. Math. Phys., 51(2):023527, 10, 2010.
  18. Roland Donninger. On stable self-similar blowup for equivariant wave maps. Comm. Pure Appl. Math., 64(8):1095–1147, 2011.
  19. On the existence and stability of blowup for wave maps into a negatively curved target. Anal. PDE, 12(2):389–416, 2019.
  20. A globally stable self-similar blowup profile in energy supercritical Yang-Mills theory. arXiv e-prints, page arXiv:2108.13668, August 2021.
  21. On stable self-similar blow up for equivariant wave maps: the linearized problem. Ann. Henri Poincaré, 13(1):103–144, 2012.
  22. Optimal blowup stability for supercritical wave maps. arXiv e-prints, page arXiv:2201.11419, January 2022.
  23. One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.
  24. Optimal polynomial blow up range for critical wave maps. Commun. Pure Appl. Anal., 14(5):1705–1741, 2015.
  25. Construction of type II blowup solutions for the 1-corotational energy supercritical wave maps. J. Differential Equations, 265(7):2968–3047, 2018.
  26. The Cauchy problem for the O⁢(N),𝐂⁢P⁢(N−1),O𝑁𝐂P𝑁1{\rm O}(N),\,{\bf C}{\rm P}(N-1),roman_O ( italic_N ) , bold_C roman_P ( italic_N - 1 ) , and G𝐂⁢(N,p)subscript𝐺𝐂𝑁𝑝G_{{\bf C}}(N,\,p)italic_G start_POSTSUBSCRIPT bold_C end_POSTSUBSCRIPT ( italic_N , italic_p ) models. Ann. Physics, 142(2):393–415, 1982.
  27. Irfan Glogić. On the Existence and Stability of Self-Similar Blowup in Nonlinear Wave Equations. ProQuest LLC, Ann Arbor, MI, 2018. Thesis (Ph.D.)–The Ohio State University.
  28. Threshold for blowup for the supercritical cubic wave equation. Nonlinearity, 33(5):2143–2158, mar 2020.
  29. Co-dimension one stable blowup for the supercritical cubic wave equation. Adv. Math., 390:Paper No. 107930, 79, 2021.
  30. Irfan Glogić. Stable blowup for the supercritical hyperbolic Yang-Mills equations. Adv. Math., 408:Paper No. 108633, 52 pp., 2022.
  31. Loukas Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics. Springer, New York, second edition, 2008.
  32. Chao Hao Gu. On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space. Comm. Pure Appl. Math., 33(6):727–737, 1980.
  33. The Kolmogorov-Riesz compactness theorem. Expo. Math., 28(4):385–394, 2010.
  34. Local and global well-posedness of wave maps on ℝ1+1superscriptℝ11\mathbb{R}^{1+1}blackboard_R start_POSTSUPERSCRIPT 1 + 1 end_POSTSUPERSCRIPT for rough data. Internat. Math. Res. Notices, (21):1117–1156, 1998.
  35. Sergiu Klainerman. On the regularity of classical field theories in Minkowski space-time 𝐑3+1superscript𝐑31{\bf R}^{3+1}bold_R start_POSTSUPERSCRIPT 3 + 1 end_POSTSUPERSCRIPT. In Nonlinear partial differential equations in geometry and physics (Knoxville, TN, 1995), volume 29 of Progr. Nonlinear Differential Equations Appl., pages 29–69. Birkhäuser, Basel, 1997.
  36. On the optimal local regularity for gauge field theories. Differential Integral Equations, 10(6):1019–1030, 1997.
  37. On the global regularity of wave maps in the critical Sobolev norm. Internat. Math. Res. Notices, (13):655–677, 2001.
  38. Remark on the optimal regularity for equations of wave maps type. Comm. Partial Differential Equations, 22(5-6):901–918, 1997.
  39. Joachim Krieger. Null-form estimates and nonlinear waves. Adv. Differential Equations, 8(10):1193–1236, 2003.
  40. On the stability of blowup solutions for the critical corotational wave-map problem. Duke Math. J., 169(3):435–532, 2020.
  41. Concentration compactness for critical wave maps. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2012.
  42. Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math., 171(3):543–615, 2008.
  43. Charles W. Misner. Harmonic maps as models for physical theories. Phys. Rev. D (3), 18(12):4510–4524, 1978.
  44. Charles W. Misner. Nonlinear model field theories based on harmonic mappings, pages x+189. University of Texas Press, Austin, Tex., 1982. The Alfred Schild Lectures.
  45. Classical and multilinear harmonic analysis. Vol. I, volume 137 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2013.
  46. On the well-posedness of the wave map problem in high dimensions. Comm. Anal. Geom., 11(1):49–83, 2003.
  47. NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX).
  48. Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems. Publ. Math. Inst. Hautes Études Sci., pages 1–122, 2012.
  49. An introduction to partial differential equations, volume 13 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 2004.
  50. On the formation of singularities in the critical O⁢(3)O3{\rm O}(3)roman_O ( 3 ) σ𝜎\sigmaitalic_σ-model. Ann. of Math. (2), 172(1):187–242, 2010.
  51. Walter Rudin. Principles of mathematical analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976.
  52. Jalal Shatah. Weak solutions and development of singularities of the SU⁢(2)SU2{\rm SU}(2)roman_SU ( 2 ) σ𝜎\sigmaitalic_σ-model. Comm. Pure Appl. Math., 41(4):459–469, 1988.
  53. Geometric wave equations, volume 2 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1998.
  54. The Cauchy problem for wave maps. Int. Math. Res. Not., (11):555–571, 2002.
  55. Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds. Comm. Pure Appl. Math., 45(8):947–971, 1992.
  56. On the Cauchy problem for equivariant wave maps. Comm. Pure Appl. Math., 47(5):719–754, 1994.
  57. Energy dispersed large data wave maps in 2+1212+12 + 1 dimensions. Comm. Math. Phys., 298(1):139–230, 2010.
  58. Regularity of wave-maps in dimension 2+1212+12 + 1. Comm. Math. Phys., 298(1):231–264, 2010.
  59. Terence Tao. Ill-posedness for one-dimensional wave maps at the critical regularity. Amer. J. Math., 122(3):451–463, 2000.
  60. Terence Tao. Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Internat. Math. Res. Notices, (6):299–328, 2001.
  61. Terence Tao. Global regularity of wave maps. II. Small energy in two dimensions. Comm. Math. Phys., 224(2):443–544, 2001.
  62. Terence Tao. Global regularity of wave maps III-VII. arXiv preprints, 2008-2009.
  63. Daniel Tataru. Local and global results for wave maps. I. Comm. Partial Differential Equations, 23(9-10):1781–1793, 1998.
  64. Daniel Tataru. On global existence and scattering for the wave maps equation. Amer. J. Math., 123(1):37–77, 2001.
  65. Daniel Tataru. The wave maps equation. Bull. Amer. Math. Soc. (N.S.), 41(2):185–204, 2004.
  66. Global texture and the microwave background. Phys. Rev. Lett., 64:2736–2739, Jun 1990.
Citations (8)

Summary

We haven't generated a summary for this paper yet.