2000 character limit reached
Rational maps with smooth degenerate Herman rings (2207.06770v2)
Published 14 Jul 2022 in math.DS
Abstract: We prove the existence of rational maps having smooth degenerate Herman rings. This answers a question of Eremenko affirmatively. The proof is based on the construction of smooth Siegel disks by Avila, Buff and Ch\'{e}ritat as well as the classical Siegel-to-Herman quasiconformal surgery. A crucial ingredient in the proof is the surgery's continuity, which relies on the control of the loss of the area of quadratic filled-in Julia sets by Buff and Ch\'{e}ritat. As a by-product, we prove the existence of rational maps having a nowhere dense Julia set of positive area for which these maps have no irrationally indifferent periodic points, no Herman rings, and are not renormalizable.