2000 character limit reached
On the Divisibility of 7-Elongated Plane Partition Diamonds by Powers of 8 (2207.06712v2)
Published 14 Jul 2022 in math.NT
Abstract: In 2021 da Silva, Hirschhorn, and Sellers studied a wide variety of congruences for the $k$-elongated plane partition function $d_k(n)$ by various primes. They also conjectured the existence of an infinite congruence family modulo arbitrarily high powers of 2 for the function $d_7(n)$. We prove that such a congruence family exists -- indeed, for powers of 8. The proof utilizes only classical methods, i.e., integer polynomial manipulations in a single function, in contrast to all other known infinite congruence families for $d_k(n)$ which require more modern methods to prove.