Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

Have we been Naive to Select Machine Learning Models? Noisy Data are here to Stay! (2207.06651v1)

Published 14 Jul 2022 in cs.LG

Abstract: The model selection procedure is usually a single-criterion decision making in which we select the model that maximizes a specific metric in a specific set, such as the Validation set performance. We claim this is very naive and can perform poor selections of over-fitted models due to the over-searching phenomenon, which over-estimates the performance on that specific set. Futhermore, real world data contains noise that should not be ignored by the model selection procedure and must be taken into account when performing model selection. Also, we have defined four theoretical optimality conditions that we can pursue to better select the models and analyze them by using a multi-criteria decision-making algorithm (TOPSIS) that considers proxies to the optimality conditions to select reasonable models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube