Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visuo-Tactile Manipulation Planning Using Reinforcement Learning with Affordance Representation (2207.06608v1)

Published 14 Jul 2022 in cs.RO

Abstract: Robots are increasingly expected to manipulate objects in ever more unstructured environments where the object properties have high perceptual uncertainty from any single sensory modality. This directly impacts successful object manipulation. In this work, we propose a reinforcement learning-based motion planning framework for object manipulation which makes use of both on-the-fly multisensory feedback and a learned attention-guided deep affordance model as perceptual states. The affordance model is learned from multiple sensory modalities, including vision and touch (tactile and force/torque), which is designed to predict and indicate the manipulable regions of multiple affordances (i.e., graspability and pushability) for objects with similar appearances but different intrinsic properties (e.g., mass distribution). A DQN-based deep reinforcement learning algorithm is then trained to select the optimal action for successful object manipulation. To validate the performance of the proposed framework, our method is evaluated and benchmarked using both an open dataset and our collected dataset. The results show that the proposed method and overall framework outperform existing methods and achieve better accuracy and higher efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Wenyu Liang (7 papers)
  2. Fen Fang (7 papers)
  3. Cihan Acar (6 papers)
  4. Wei Qi Toh (3 papers)
  5. Ying Sun (154 papers)
  6. Qianli Xu (10 papers)
  7. Yan Wu (109 papers)
Citations (1)