Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention: Not Just Another Dataset for Patch-Correctness Checking (2207.06590v2)

Published 14 Jul 2022 in cs.SE

Abstract: Automated Program Repair (APR) techniques have drawn wide attention from both academia and industry. Meanwhile, one main limitation with the current state-of-the-art APR tools is that patches passing all the original tests are not necessarily the correct ones wanted by developers, i.e., the plausible patch problem. To date, various Patch-Correctness Checking (PCC) techniques have been proposed to address this important issue. However, they are only evaluated on very limited datasets as the APR tools used for generating such patches can only explore a small subset of the search space of possible patches, posing serious threats to external validity to existing PCC studies. In this paper, we construct an extensive PCC dataset (the largest manually labeled PCC dataset to our knowledge) to revisit all state-of-the-art PCC techniques. More specifically, our PCC dataset includes 1,988 patches generated from the recent PraPR APR tool, which leverages highly-optimized bytecode-level patch executions and can exhaustively explore all possible plausible patches within its large predefined search space (including well-known fixing patterns from various prior APR tools). Our extensive study of representative PCC techniques on the new dataset has revealed various surprising findings and provided guidelines for future PCC research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jun Yang (357 papers)
  2. Yuehan Wang (3 papers)
  3. Yiling Lou (28 papers)
  4. Ming Wen (26 papers)
  5. Lingming Zhang (48 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.