Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Catastrophic Forgetting for Random Orthogonal Transformation Tasks in the Overparameterized Regime (2207.06475v1)

Published 1 Jun 2022 in cs.LG, cs.AI, and stat.ML

Abstract: Overparameterization is known to permit strong generalization performance in neural networks. In this work, we provide an initial theoretical analysis of its effect on catastrophic forgetting in a continual learning setup. We show experimentally that in permuted MNIST image classification tasks, the generalization performance of multilayer perceptrons trained by vanilla stochastic gradient descent can be improved by overparameterization, and the extent of the performance increase achieved by overparameterization is comparable to that of state-of-the-art continual learning algorithms. We provide a theoretical explanation of this effect by studying a qualitatively similar two-task linear regression problem, where each task is related by a random orthogonal transformation. We show that when a model is trained on the two tasks in sequence without any additional regularization, the risk gain on the first task is small if the model is sufficiently overparameterized.

Citations (6)

Summary

We haven't generated a summary for this paper yet.