Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistence and the Sheaf-Function Correspondence (2207.06335v2)

Published 13 Jul 2022 in math.AT and cs.CG

Abstract: The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold $M$ with the Grothendieck group of constructible sheaves on $M$. When $M$ is a finite dimensional real vector space, Kashiwara-Schapira have recently introduced the convolution distance between sheaves of $k$-vector spaces on $M$. In this paper, we characterize distances on the group of constructible functions on a real finite dimensional vector space that can be controlled by the convolution distance through the sheaf-function correspondence. Our main result asserts that such distances are almost trivial: they vanish as soon as two constructible functions have the same Euler integral. We formulate consequences of our result for Topological Data Analysis: there cannot exists non-trivial additive invariants of persistence modules that are continuous for the interleaving distance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.