Deciding FO-rewritability of regular languages and ontology-mediated queries in Linear Temporal Logic (2207.06210v2)
Abstract: Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) formulated in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with some extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides with FO(<,\equiv)-rewritability using unary predicates x \equiv 0 (mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We prove that, similarly to known PSPACE-completeness of recognising FO(<)-definability of regular languages, deciding FO(<,\equiv)- and FO(<,MOD)-definability is also \PSPACE-complete (unless ACC0 = NC1). We then use this result to show that deciding FO(<)-, FO(<,\equiv)- and FO(<,MOD)-rewritability of LTL OMQs is EXPSPACE-complete, and that these problems become PSPACE-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,\equiv)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSPACE-, Pi_2p- and coNP-complete.
- Agi Kurucz (13 papers)
- Vladislav Ryzhikov (19 papers)
- Yury Savateev (8 papers)
- Michael Zakharyaschev (37 papers)