Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Herd Routes: A Preventative IoT-Based System for Improving Female Pedestrian Safety on City Streets (2207.05279v1)

Published 12 Jul 2022 in eess.SY, cs.MA, and cs.SY

Abstract: Over two thirds of women of all ages in the UK have experienced some form of sexual harassment in a public space. Recent tragic incidents involving female pedestrians have highlighted some of the personal safety issues that women still face in cities today. There exist many popular location-based safety applications as a result of this; however, these applications tend to take a reactive approach where action is taken only after an incident has occurred. This paper proposes a preventative approach to the problem by creating safer public environments through societal incentivisation. The proposed system, called "Herd Routes", improves the safety of female pedestrians by generating busier pedestrian routes as a result of route incentivisation. A novel application of distributed ledgers is proposed to provide security and trust, a record of system users' locations and IDs, and a platform for token exchange. A proof-of-concept was developed using the simulation package SUMO (Simulation of Urban Mobility), and a smartphone app. was built in Android Studio so that pedestrian Hardware-in-the-Loop testing could be carried out to validate the technical feasibility and desirability of the system. With positive results from the initial testing of the proof-of-concept, further development could significantly contribute towards creating safer pedestrian routes through cities, and tackle the societal change that is required to improve female pedestrian safety in the long term.

Citations (1)

Summary

We haven't generated a summary for this paper yet.