Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Reversible Markov decision processes and the Gaussian free field (2207.05217v1)

Published 11 Jul 2022 in math.PR, cs.SY, eess.SY, and math.OC

Abstract: A Markov decision problem is called reversible if the stationary controlled Markov chain is reversible under every stationary Markovian strategy. A natural application in which such problems arise is in the control of Metropolis-Hastings type dynamics. We characterize all discrete time reversible Markov decision processes with finite state and actions spaces. We show that policy iteration algorithm for finding an optimal policy can be significantly simplified Markov decision problems of this type. We also highlight the relation between the finite time evolution of the accrual of reward and the Gaussian free field associated to the controlled Markov chain.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)