Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved bounds on the gain coefficients for digital nets in prime power base (2207.04666v2)

Published 11 Jul 2022 in math.NA and cs.NA

Abstract: We study randomized quasi-Monte Carlo integration by scrambled nets. The scrambled net quadrature has long gained its popularity because it is an unbiased estimator of the true integral, allows for a practical error estimation, achieves a high order decay of the variance for smooth functions, and works even for $Lp$-functions with any $p\geq 1$. The variance of the scrambled net quadrature for $L2$-functions can be evaluated through the set of the so-called gain coefficients. In this paper, based on the system of Walsh functions and the concept of dual nets, we provide improved upper bounds on the gain coefficients for digital nets in general prime power base. Our results explain the known bound by Owen (1997) for Faure sequences, the recently improved bound by Pan and Owen (2021) for digital nets in base 2 (including Sobol' sequences as a special case), and their finding that all the nonzero gain coefficients for digital nets in base 2 must be powers of two, all in a unified way.

Citations (3)

Summary

We haven't generated a summary for this paper yet.