Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Horizontal and Vertical Attention in Transformers (2207.04399v1)

Published 10 Jul 2022 in cs.CV

Abstract: Transformers are built upon multi-head scaled dot-product attention and positional encoding, which aim to learn the feature representations and token dependencies. In this work, we focus on enhancing the distinctive representation by learning to augment the feature maps with the self-attention mechanism in Transformers. Specifically, we propose the horizontal attention to re-weight the multi-head output of the scaled dot-product attention before dimensionality reduction, and propose the vertical attention to adaptively re-calibrate channel-wise feature responses by explicitly modelling inter-dependencies among different channels. We demonstrate the Transformer models equipped with the two attentions have a high generalization capability across different supervised learning tasks, with a very minor additional computational cost overhead. The proposed horizontal and vertical attentions are highly modular, which can be inserted into various Transformer models to further improve the performance. Our code is available in the supplementary material.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Litao Yu (12 papers)
  2. Jian Zhang (542 papers)
Citations (1)