Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Diffusion Model Efficiency Through Patching (2207.04316v1)

Published 9 Jul 2022 in cs.LG and cs.CV

Abstract: Diffusion models are a powerful class of generative models that iteratively denoise samples to produce data. While many works have focused on the number of iterations in this sampling procedure, few have focused on the cost of each iteration. We find that adding a simple ViT-style patching transformation can considerably reduce a diffusion model's sampling time and memory usage. We justify our approach both through an analysis of the diffusion model objective, and through empirical experiments on LSUN Church, ImageNet 256, and FFHQ 1024. We provide implementations in Tensorflow and Pytorch.

Citations (16)

Summary

We haven't generated a summary for this paper yet.