Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Binary Forward Exploration: Learning Rate Scheduling Method for Stochastic Optimization (2207.04198v3)

Published 9 Jul 2022 in cs.LG and math.OC

Abstract: A new gradient-based optimization approach by automatically scheduling the learning rate has been proposed recently, which is called Binary Forward Exploration (BFE). The Adaptive version of BFE has also been discussed thereafter. In this paper, the improved algorithms based on them will be investigated, in order to optimize the efficiency and robustness of the new methodology. This improved approach provides a new perspective to scheduling the update of learning rate and will be compared with the stochastic gradient descent, aka SGD algorithm with momentum or Nesterov momentum and the most successful adaptive learning rate algorithm e.g. Adam. The goal of this method does not aim to beat others but provide a different viewpoint to optimize the gradient descent process. This approach combines the advantages of the first-order and second-order optimizations in the aspects of speed and efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xin Cao (52 papers)

Summary

We haven't generated a summary for this paper yet.