Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
Abstract: As part of the effort to understand implicit bias of gradient descent in overparametrized models, several results have shown how the training trajectory on the overparametrized model can be understood as mirror descent on a different objective. The main result here is a characterization of this phenomenon under a notion termed commuting parametrization, which encompasses all the previous results in this setting. It is shown that gradient flow with any commuting parametrization is equivalent to continuous mirror descent with a related Legendre function. Conversely, continuous mirror descent with any Legendre function can be viewed as gradient flow with a related commuting parametrization. The latter result relies upon Nash's embedding theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.