Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficiency Study for SPLADE Models (2207.03834v1)

Published 8 Jul 2022 in cs.IR and cs.CL

Abstract: Latency and efficiency issues are often overlooked when evaluating IR models based on Pretrained LLMs (PLMs) in reason of multiple hardware and software testing scenarios. Nevertheless, efficiency is an important part of such systems and should not be overlooked. In this paper, we focus on improving the efficiency of the SPLADE model since it has achieved state-of-the-art zero-shot performance and competitive results on TREC collections. SPLADE efficiency can be controlled via a regularization factor, but solely controlling this regularization has been shown to not be efficient enough. In order to reduce the latency gap between SPLADE and traditional retrieval systems, we propose several techniques including L1 regularization for queries, a separation of document/query encoders, a FLOPS-regularized middle-training, and the use of faster query encoders. Our benchmark demonstrates that we can drastically improve the efficiency of these models while increasing the performance metrics on in-domain data. To our knowledge, {we propose the first neural models that, under the same computing constraints, \textit{achieve similar latency (less than 4ms difference) as traditional BM25}, while having \textit{similar performance (less than 10\% MRR@10 reduction)} as the state-of-the-art single-stage neural rankers on in-domain data}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Carlos Lassance (35 papers)
  2. Stéphane Clinchant (39 papers)
Citations (60)

Summary

We haven't generated a summary for this paper yet.