Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Effectiveness of Video Perceptual Representation in Blind Video Quality Assessment (2207.03723v1)

Published 8 Jul 2022 in cs.CV, cs.MM, and eess.IV

Abstract: With the rapid growth of in-the-wild videos taken by non-specialists, blind video quality assessment (VQA) has become a challenging and demanding problem. Although lots of efforts have been made to solve this problem, it remains unclear how the human visual system (HVS) relates to the temporal quality of videos. Meanwhile, recent work has found that the frames of natural video transformed into the perceptual domain of the HVS tend to form a straight trajectory of the representations. With the obtained insight that distortion impairs the perceived video quality and results in a curved trajectory of the perceptual representation, we propose a temporal perceptual quality index (TPQI) to measure the temporal distortion by describing the graphic morphology of the representation. Specifically, we first extract the video perceptual representations from the lateral geniculate nucleus (LGN) and primary visual area (V1) of the HVS, and then measure the straightness and compactness of their trajectories to quantify the degradation in naturalness and content continuity of video. Experiments show that the perceptual representation in the HVS is an effective way of predicting subjective temporal quality, and thus TPQI can, for the first time, achieve comparable performance to the spatial quality metric and be even more effective in assessing videos with large temporal variations. We further demonstrate that by combining with NIQE, a spatial quality metric, TPQI can achieve top performance over popular in-the-wild video datasets. More importantly, TPQI does not require any additional information beyond the video being evaluated and thus can be applied to any datasets without parameter tuning. Source code is available at https://github.com/UoLMM/TPQI-VQA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Liang Liao (36 papers)
  2. Kangmin Xu (3 papers)
  3. Haoning Wu (68 papers)
  4. Chaofeng Chen (41 papers)
  5. Wenxiu Sun (59 papers)
  6. Qiong Yan (39 papers)
  7. Weisi Lin (118 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub