Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the accuracy of discretisations of the vector transport equation on the lowest-order quadrilateral Raviart-Thomas finite elements (2207.03519v1)

Published 7 Jul 2022 in math.NA, cs.NA, and physics.flu-dyn

Abstract: Within finite element models of fluids, vector-valued fields such as velocity or momentum variables are commonly discretised using the Raviart-Thomas elements. However, when using the lowest-order quadrilateral Raviart-Thomas elements, standard finite element discretisations of the vector transport equation typically have a low order of spatial accuracy. This paper describes two schemes that improve the accuracy of transporting such vector-valued fields on two-dimensional curved manifolds. The first scheme that is presented reconstructs the transported field in a higher-order function space, where the transport equation is then solved. The second scheme applies a mixed finite element formulation to the vector transport equation, simultaneously solving for the transported field and its vorticity. An approach to stabilising this mixed vector-vorticity formulation is presented that uses a Streamline Upwind Petrov-Galerkin (SUPG) method. These schemes are then demonstrated, along with their accuracy properties, through some numerical tests. Two new test cases are used to assess the transport of vector-valued fields on curved manifolds, solving the vector transport equation in isolation. The improvement of the schemes is also shown through two standard test cases for rotating shallow-water models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.