Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to restore images degraded by atmospheric turbulence using uncertainty (2207.03447v1)

Published 7 Jul 2022 in eess.IV and cs.CV

Abstract: Atmospheric turbulence can significantly degrade the quality of images acquired by long-range imaging systems by causing spatially and temporally random fluctuations in the index of refraction of the atmosphere. Variations in the refractive index causes the captured images to be geometrically distorted and blurry. Hence, it is important to compensate for the visual degradation in images caused by atmospheric turbulence. In this paper, we propose a deep learning-based approach for restring a single image degraded by atmospheric turbulence. We make use of the epistemic uncertainty based on Monte Carlo dropouts to capture regions in the image where the network is having hard time restoring. The estimated uncertainty maps are then used to guide the network to obtain the restored image. Extensive experiments are conducted on synthetic and real images to show the significance of the proposed work. Code is available at : https://github.com/rajeevyasarla/AT-Net

Citations (37)

Summary

We haven't generated a summary for this paper yet.