Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smooth Fictitious Play in Stochastic Games with Perturbed Payoffs and Unknown Transitions (2207.03109v1)

Published 7 Jul 2022 in cs.GT

Abstract: Recent extensions to dynamic games of the well-known fictitious play learning procedure in static games were proved to globally converge to stationary Nash equilibria in two important classes of dynamic games (zero-sum and identical-interest discounted stochastic games). However, those decentralized algorithms need the players to know exactly the model (the transition probabilities and their payoffs at every stage). To overcome these strong assumptions, our paper introduces regularizations of the systems in (Leslie 2020; Baudin 2022) to construct a family of new decentralized learning algorithms which are model-free (players don't know the transitions and their payoffs are perturbed at every stage). Our procedures can be seen as extensions to stochastic games of the classical smooth fictitious play learning procedures in static games (where the players best responses are regularized, thanks to a smooth strictly concave perturbation of their payoff functions). We prove the convergence of our family of procedures to stationary regularized Nash equilibria in zero-sum and identical-interest discounted stochastic games. The proof uses the continuous smooth best-response dynamics counterparts, and stochastic approximation methods. When there is only one player, our problem is an instance of Reinforcement Learning and our procedures are proved to globally converge to the optimal stationary policy of the regularized MDP. In that sense, they can be seen as an alternative to the well known Q-learning procedure.

Citations (7)

Summary

We haven't generated a summary for this paper yet.