Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation (2207.02983v1)

Published 6 Jul 2022 in math.FA, math.CA, math.CV, and math.SP

Abstract: For a pair $(A,B)$ of not necessarily bounded and not necessarily commuting self-adjoint operators and for a function $f$ on the Euclidean space ${\Bbb R}2$ that belongs to the inhomogeneous Besov class $B_{\infty,1}1({\Bbb R}2)$, we define the function $f(A,B)$ of these operators as a densely defined operator. We consider the problem of estimating the functions $f(A,B)$ under perturbations of the pair $(A,B)$. It is established that if $1\le p\le2$, and $(A_1,B_1)$ and $(A_2,B_2)$ are pairs of not necessarily bounded and not necessarily commuting self-adjoint operators such that the operators $A_1-A_2$ and $B_1-B_2$ belong to the Schatten--von Neumann class $\boldsymbol{S}p$ with $p\in[1,2]$ and $f\in B{\infty,1}1({\Bbb R}2)$, then the following Lipschitz type estimate holds: [ |f(A_1,B_1)-f(A_2,B_2)|{\boldsymbol{S}_p} \le\operatorname{const}|f|{B_{\infty,1}1}\max\big{|A_1-A_2|{\boldsymbol{S}_p},|B_1-B_2|{\boldsymbol{S}_p}\big}. ]

Summary

We haven't generated a summary for this paper yet.