Papers
Topics
Authors
Recent
2000 character limit reached

The homological arrow polynomial for virtual links

Published 6 Jul 2022 in math.GT | (2207.02427v2)

Abstract: The arrow polynomial is an invariant of framed oriented virtual links that generalizes the virtual Kauffman bracket. In this paper we define the homological arrow polynomial, which generalizes the arrow polynomial to framed oriented virtual links with labeled components. The key observation is that, given a link in a thickened surface, the homology class of the link defines a functional on the surface's skein module, and by applying it to the image of the link in the skein module this gives a virtual link invariant. We give a graphical calculus for the homological arrow polynomial by taking the usual diagrams for the Kauffman bracket and including labeled "whiskers" that record intersection numbers with each labeled component of the link. We use the homological arrow polynomial to study $(\mathbb{Z}/n\mathbb{Z})$-nullhomologous virtual links and checkerboard colorability, giving a new way to complete Imabeppu's characterization of checkerboard colorability of virtual links with up to four crossings. We also prove a version of the Kauffman-Murasugi-Thistlethwaite theorem that the breadth of an evaluation of the homological arrow polynomial for an "h-reduced" diagram $D$ is $4(c(D)-g(D)+1)$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.