Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STOCHOS: Stochastic Opportunistic Maintenance Scheduling For Offshore Wind Farms (2207.02274v3)

Published 5 Jul 2022 in eess.SY, cs.SY, and math.OC

Abstract: Despite the promising outlook, the numerous economic and environmental benefits of offshore wind energy are still compromised by its high operations and maintenance (O&M) expenditures. On one hand, offshore-specific challenges such as site remoteness, harsh weather, transportation requirements, and production losses, significantly inflate the O&M costs relative to land-based wind farms. On the other hand, the uncertainties in weather conditions, asset degradation, and electricity prices largely constrain the farm operator's ability to identify the time windows at which maintenance is possible, let alone optimal. In response, we propose STOCHOS, short for the stochastic holistic opportunistic scheduler--a maintenance scheduling approach tailored to address the unique challenges and uncertainties in offshore wind farms. Given probabilistic forecasts of key environmental and operational parameters, STOCHOS optimally schedules the offshore maintenance tasks by harnessing the opportunities that arise due to favorable weather conditions, on-site maintenance resources, and maximal operating revenues. STOCHOS is formulated as a two-stage stochastic mixed integer linear program, which we solve using a scenario-based rolling horizon algorithm that aligns with the industrial practice. Tested on real-world data from the U.S. North Atlantic where several offshore wind farms are in-development, STOCHOS demonstrates considerable improvements relative to prevalent maintenance benchmarks, across various O&M metrics, including total cost, downtime, resource utilization, and maintenance interruptions.

Citations (20)

Summary

We haven't generated a summary for this paper yet.