Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schrödinger operators with oblique transmission conditions in $\mathbb{R}^2$ (2207.01998v2)

Published 5 Jul 2022 in math.SP, math-ph, math.AP, math.FA, and math.MP

Abstract: In this paper we study the spectrum of self-adjoint Schr\"odinger operators in $L2(\mathbb{R}2)$ with a new type of transmission conditions along a smooth closed curve $\Sigma\subseteq \mathbb{R}2$. Although these $\textit{oblique}$ transmission conditions are formally similar to $\delta'$-conditions on $\Sigma$ (instead of the normal derivative here the Wirtinger derivative is used) the spectral properties are significantly different: it turns out that for attractive interaction strengths the discrete spectrum is always unbounded from below. Besides this unexpected spectral effect we also identify the essential spectrum, and we prove a Krein-type resolvent formula and a Birman-Schwinger principle. Furthermore, we show that these Schr\"odinger operators with oblique transmission conditions arise naturally as non-relativistic limits of Dirac operators with electrostatic and Lorentz scalar $\delta$-interactions justifying their usage as models in quantum mechanics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.