Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Additive complementary dual codes over $\F_4$ (2207.01938v1)

Published 5 Jul 2022 in cs.IT, cs.CR, cs.CY, and math.IT

Abstract: A linear code is linear complementary dual (LCD) if it meets its dual trivially. LCD codes have been a hot topic recently due to Boolean masking application in the security of embarked electronics (Carlet and Guilley, 2014). Additive codes over $\F_4$ are $\F_4$-codes that are stable by codeword addition but not necessarily by scalar multiplication. An additive code over $\F_4$ is additive complementary dual (ACD) if it meets its dual trivially. The aim of this research is to study such codes which meet their dual trivially. All the techniques and problems used to study LCD codes are potentially relevant to ACD codes. Interesting constructions of ACD codes from binary codes are given with respect to the trace Hermitian and trace Euclidean inner product. The former product is relevant to quantum codes.

Citations (11)

Summary

We haven't generated a summary for this paper yet.