Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GLANCE: Global to Local Architecture-Neutral Concept-based Explanations (2207.01917v1)

Published 5 Jul 2022 in cs.CV and cs.AI

Abstract: Most of the current explainability techniques focus on capturing the importance of features in input space. However, given the complexity of models and data-generating processes, the resulting explanations are far from being complete', in that they lack an indication of feature interactions and visualization of theireffect'. In this work, we propose a novel twin-surrogate explainability framework to explain the decisions made by any CNN-based image classifier (irrespective of the architecture). For this, we first disentangle latent features from the classifier, followed by aligning these features to observed/human-defined context' features. These aligned features form semantically meaningful concepts that are used for extracting a causal graph depicting theperceived' data-generating process, describing the inter- and intra-feature interactions between unobserved latent features and observed context' features. This causal graph serves as a global model from which local explanations of different forms can be extracted. Specifically, we provide a generator to visualize theeffect' of interactions among features in latent space and draw feature importance therefrom as local explanations. Our framework utilizes adversarial knowledge distillation to faithfully learn a representation from the classifiers' latent space and use it for extracting visual explanations. We use the styleGAN-v2 architecture with an additional regularization term to enforce disentanglement and alignment. We demonstrate and evaluate explanations obtained with our framework on Morpho-MNIST and on the FFHQ human faces dataset. Our framework is available at \url{https://github.com/koriavinash1/GLANCE-Explanations}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Avinash Kori (29 papers)
  2. Ben Glocker (143 papers)
  3. Francesca Toni (96 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.